71 datasets found
  1. Data from: Infant Mortality in the U.S.

    • gis-for-racialequity.hub.arcgis.com
    Updated May 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2018). Infant Mortality in the U.S. [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/63072acf02734741868b0ff5b55c4dc3
    Explore at:
    Dataset updated
    May 10, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the infant mortality rate and total number of infant deaths. This is shown by county, state, and country from the 2022 County Health Rankings. The national average is 5.7 deaths per 1,000.The data comes from the County Health Rankings 2022 layer. The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.

  2. Medical Service Study Areas

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://data.chhs.ca.gov/dataset/medical-service-study-areas
    Explore at:
    zip, arcgis geoservices rest api, csv, kml, geojson, htmlAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  3. Healthcare Data

    • caliper.com
    cdf, dwg, dxf, gdb +9
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caliper Corporation (2024). Healthcare Data [Dataset]. https://www.caliper.com/mapping-software-data/maptitude-healthcare-data.htm
    Explore at:
    sql server mssql, ntf, postgis, cdf, kmz, shp, kml, geojson, dwg, sdo, dxf, gdb, postgresqlAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset authored and provided by
    Caliper Corporationhttp://www.caliper.com/
    License

    https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

    Time period covered
    2024
    Area covered
    United States
    Description

    Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.

  4. O

    MAP DATASET alcohol chronic disease mortality in the U.S.

    • bah.demo.socrata.com
    csv, xlsx, xml
    Updated Aug 31, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC (2016). MAP DATASET alcohol chronic disease mortality in the U.S. [Dataset]. https://bah.demo.socrata.com/Government/MAP-DATASET-alcohol-chronic-disease-mortality-in-t/jnv3-5pgt
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Aug 31, 2016
    Dataset authored and provided by
    CDC
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    CDC's Division of Population Health provides cross-cutting set of 124 indicators that were developed by consensus and that allows states and territories and large metropolitan areas to uniformly define, collect, and report chronic disease data that are important to public health practice and available for states, territories and large metropolitan areas. In addition to providing access to state-specific indicator data, the CDI web site serves as a gateway to additional information and data resources.

  5. Health Care Spending in the United States

    • hub.arcgis.com
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Health Care Spending in the United States [Dataset]. https://hub.arcgis.com/maps/a35bae20e38b40318ddc7423aee62ab5
    Explore at:
    Dataset updated
    Jun 26, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of June 2023 and will be retired in December 2025. This map shows the average amount spent on health care per household in the U.S. in 2022 in a multiscale map (by country, state, county, ZIP Code, tract, and block group).The pop-up is configured to include the following information for each geography level:Average annual health care spending per householdBreakdown of average annual medical care spending per householdBreakdown of medical services spending per householdPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.

  6. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +3more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  7. d

    DOHMH Health Map - Hepatitis

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DOHMH Health Map - Hepatitis [Dataset]. https://catalog.data.gov/dataset/dohmh-health-map-hepatitis
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    The Hepatitis category in NYC Health Map provides a list of facilities for the public and service providers looking for prevention services, testing, and treatment for hepatitis B and C. Due to shared risk factors, people living with HIV should get the Hep B vaccine, and should get tested for both Hep B and C. The programs listed have been verified by the NYC DOHMH. https://a816-healthpsi.nyc.gov/NYCHealthMap The Viral Hepatitis Program in the Bureau of Hepatitis, HIV and STI contracts with organizations in the city to provide peer navigation and patient navigation for Hep B and C. These agencies and their hepatitis services are listed in the NYC Health Map for public use. The Hepatitis list also includes agencies contracted by the New York State Health Department to provide Hep C testing, care and treatment, and agencies participating in the Hep Free NYC network. This list is maintained in a database by Viral Hepatitis Program staff and is updated once a year. It does not capture all hepatitis B and C services available in New York City. The data is organized by service type, and each record represents a service offered at a single location. Hepatitis A vaccine information is kept separately in the Vaccines list managed by the Bureau of Immunizations.

  8. a

    Where are the uninsured youth in the US?

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Apr 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Where are the uninsured youth in the US? [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/9cc5107d04f340a396e73afd8d18cb3e
    Explore at:
    Dataset updated
    Apr 13, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map shows where children have no health insurance coverage in the US. Children are defined as those under age 19. The map shows the percentage of all children who are uninsured, but also shows the total count of uninsured children. The map shows uninsured children by states, counties, and tracts, and the map can be customized and saved into a new map for anywhere in the US. The pattern can be seen throughout the US by searching for an area of interest. The data comes from the most current American Community Survey (ACS) estimates from the U.S. Census Bureau. The metadata, vintage, and source information about the data layer used in this map can be found here. The data layer is updated automatically each year when the Census releases their new estimates, so this map always contains the newest data values.To find more US health-related layers and maps to use in your projects, visit the ArcGIS Living Atlas Health subcategory.

  9. N

    Modified Zip Code Tabulation Areas (MODZCTA)

    • data.cityofnewyork.us
    • catalog.data.gov
    Updated May 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2020). Modified Zip Code Tabulation Areas (MODZCTA) [Dataset]. https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
    Explore at:
    application/rssxml, xml, csv, application/rdfxml, tsv, application/geo+json, kml, kmzAvailable download formats
    Dataset updated
    May 13, 2020
    Dataset authored and provided by
    Department of Health and Mental Hygiene (DOHMH)
    Description

    A shapefile for mapping data by Modified Zip Code Tabulation Areas (MODZCTA) in NYC, based on the 2010 Census ZCTA shapefile. MODZCTA are being used by the NYC Department of Health & Mental Hygiene (DOHMH) for mapping COVID-19 Data.

  10. Where do People Have Medicaid/Means-Tested Healthcare?

    • data.amerigeoss.org
    esri rest, html
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2019). Where do People Have Medicaid/Means-Tested Healthcare? [Dataset]. https://data.amerigeoss.org/dataset/where-do-people-have-medicaid-means-tested-healthcare
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Apr 11, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This map shows where people have Medicaid or means-tested healthcare coverage in the US (ages under 65). This is shown by State, County, and Census Tract, and uses the most current ACS 5-year estimates.


    The map shows the percentage of the population with Medicaid or means-tested coverage, and also shows the total count of population with Medicaid or means-tested coverage. Because of medicare starting at age 65, this map represents the population under 65.

    This map shows a pattern using both centroids and boundaries. This helps clarify where specific areas reach.

    The data shown is current-year American Community Survey (ACS) data from the US Census. The data is updated each year when the ACS releases its new 5-year estimates. To see the original layers used in this map, visit this group.

    To learn more about when the ACS releases data updates, click here.

  11. Licensed and Certified Health Care Facilities

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    html, zip
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Licensed and Certified Health Care Facilities [Dataset]. https://data.chhs.ca.gov/dataset/licensed-and-certified-health-care-facilities
    Explore at:
    html, zipAvailable download formats
    Dataset updated
    Nov 12, 2024
    Dataset provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    California Health and Human Services Agencyhttps://www.chhs.ca.gov/
    Authors
    California Department of Public Health
    Description

    Note: This web page provides data on health facilities only. To file a complaint against a facility, please see: https://www.cdph.ca.gov/Programs/CHCQ/LCP/Pages/FileAComplaint.aspx

    The California Department of Public Health (CDPH), Center for Health Care Quality, Licensing and Certification (L&C) Program licenses and certifies more than 30 types of healthcare facilities. The Electronic Licensing Management System (ELMS) is a CDPH data system created to manage state licensing-related data and enforcement actions. This file includes California healthcare facilities that are operational and have a current license issued by the CDPH and/or a current U.S. Department of Health and Human Services’ Centers for Medicare and Medicaid Services (CMS) certification.

    To link the CDPH facility IDs with those from other Departments, like HCAI, please reference the "Licensed Facility Cross-Walk" Open Data table at https://data.chhs.ca.gov/dataset/licensed-facility-crosswalk. Facility geographic variables are updated monthly, if latitude/longitude information is missing at any point in time, it should be available when the next time the Open Data facility file is refreshed.

    Please note that the file contains the data from ELMS as of the 11th business day of the month. See DATA_DATE variable for the specific date of when the data was extracted.

  12. Heart Disease Mortality Data Among US Adults (35+) by State/Territory and...

    • datasets.ai
    • data.virginia.gov
    • +5more
    23, 40, 55, 8
    Updated Sep 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). Heart Disease Mortality Data Among US Adults (35+) by State/Territory and County [Dataset]. https://datasets.ai/datasets/heart-disease-mortality-data-among-us-adults-35-by-state-territory-and-county
    Explore at:
    8, 40, 55, 23Available download formats
    Dataset updated
    Sep 9, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Description

    2013 to 2015, 3-year average. Rates are age-standardized. County rates are spatially smoothed. The data can be viewed by gender and race/ethnicity. Data source: National Vital Statistics System. Additional data, maps, and methodology can be viewed on the Interactive Atlas of Heart Disease and Stroke http://www.cdc.gov/dhdsp/maps/atlas

  13. United States COVID-19 Community Levels by County as Originally Posted

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). United States COVID-19 Community Levels by County as Originally Posted [Dataset]. https://catalog.data.gov/dataset/united-states-covid-19-community-levels-by-county-as-originally-posted-ebafa
    Explore at:
    Dataset updated
    Mar 19, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html. CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium , or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information. Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view. For the most accurate and up-to-date data for any county or state, visit the relevant health department website. *COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

  14. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  15. Health Disparities (3 of 3): Asthma

    • datasets.ai
    • s.cnmilf.com
    Updated Mar 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2022). Health Disparities (3 of 3): Asthma [Dataset]. https://datasets.ai/datasets/health-disparities-3-of-3-asthma5
    Explore at:
    Dataset updated
    Mar 7, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Authors
    U.S. Environmental Protection Agency
    Description

    These data map the rate of asthma among individuals 18 years of age and older at the census tract level. Provided by the CDC Population Level Analysis and Community Estimates (PLACES). For more information, please visit https://chronicdata.cdc.gov/500-Cities-Places/PLACES-Local-Data-for-Better-Health-Census-Tract-D/cwsq-ngmh.

  16. w

    TOXMAP®: Environmental Health Maps

    • data.wu.ac.at
    • data.amerigeoss.org
    application/unknown
    Updated Sep 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2016). TOXMAP®: Environmental Health Maps [Dataset]. https://data.wu.ac.at/schema/data_gov/NTI1YWQxYjctMzE2NC00ZDU0LWEyZTUtMWZiZDUzYzRmYjA5
    Explore at:
    application/unknownAvailable download formats
    Dataset updated
    Sep 16, 2016
    Dataset provided by
    U.S. Department of Health & Human Services
    Description

    TOXMAP® is a Geographic Information System (GIS) that uses maps of the United States and Canada to help users visually explore data primarily from the EPA's Toxics Release Inventory (TRI) and Superfund Program, as well as some non-EPA datasets. TOXMAP helps users create nationwide, regional, or local area maps showing where TRI chemicals are released on-site into the air, water, and ground. It also provides facility and release details, color-codes release amounts for a single year or year range, and aggregates release data over multiple years. Maps also show locations of Superfund National Priorities List (NPL) sites, listing all chemical contaminants present at these sites. Two versions of TOXMAP are available: the classic version of TOXMAP released in 2004, and a new version of TOXMAP based on Adobe® Flash/Flex technology. The new version provides an improved map appearance and interactive capabilities and additional datasets such as EPA coal plant emissions data and U.S. commercial nuclear power plants.

  17. Coronavirus (Covid-19) Data of United States (USA)

    • kaggle.com
    zip
    Updated Nov 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Hanson (2020). Coronavirus (Covid-19) Data of United States (USA) [Dataset]. https://www.kaggle.com/joelhanson/coronavirus-covid19-data-in-the-united-states
    Explore at:
    zip(7506633 bytes)Available download formats
    Dataset updated
    Nov 5, 2020
    Authors
    Joel Hanson
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Coronavirus (COVID-19) Data in the United States

    [ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

    United States Data

    Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.

    Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.

    Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.

    Download all the data or clone this repository by clicking the green "Clone or download" button above.

    State-Level Data

    State-level data can be found in the states.csv file. (Raw CSV file here.)

    date,state,fips,cases,deaths
    2020-01-21,Washington,53,1,0
    ...
    

    County-Level Data

    County-level data can be found in the counties.csv file. (Raw CSV file here.)

    date,county,state,fips,cases,deaths
    2020-01-21,Snohomish,Washington,53061,1,0
    ...
    

    In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.

    Methodology and Definitions

    The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.

    It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.

    When the information is available, we count patients where they are being treated, not necessarily where they live.

    In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.

    For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add information about their locations later, once it became available.

    • Confirmed Cases

    Confirmed cases are patients who test positive for the coronavirus. We consider a case confirmed when it is reported by a federal, state, territorial or local government agency.

    • Dates

    For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.

    • Counties

    In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances, the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.

    Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.

    • “Unknown” Counties

    Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.

    Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.

    Geographic Exceptions

    • New York City

    All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.

    • Kansas City, Mo.

    Four counties (Cass, Clay, Jackson, and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their line.

    • Alameda, Calif.

    Counts for Alameda County include cases and deaths from Berkeley and the Grand Princess cruise ship.

    • Chicago

    All cases and deaths for Chicago are reported as part of Cook County.

    License and Attribution

    In general, we are making this data publicly available for broad, noncommercial public use including by medical and public health researchers, policymakers, analysts and local news media.

    If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”

    If you use it in an online presentation, we would appreciate it if you would link to our U.S. tracking page at https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.

    If you use this data, please let us know at covid-data@nytimes.com and indicate if you would be willing to talk to a reporter about your research.

    See our LICENSE for the full terms of use for this data.

    This license is co-extensive with the Creative Commons Attribution-NonCommercial 4.0 International license, and licensees should refer to that license (CC BY-NC) if they have questions about the scope of the license.

    Contact Us

    If you have questions about the data or licensing conditions, please contact us at:

    covid-data@nytimes.com

    Contributors

    Mitch Smith, Karen Yourish, Sarah Almukhtar, Keith Collins, Danielle Ivory, and Amy Harmon have been leading our U.S. data collection efforts.

    Data has also been compiled by Jordan Allen, Jeff Arnold, Aliza Aufrichtig, Mike Baker, Robin Berjon, Matthew Bloch, Nicholas Bogel-Burroughs, Maddie Burakoff, Christopher Calabrese, Andrew Chavez, Robert Chiarito, Carmen Cincotti, Alastair Coote, Matt Craig, John Eligon, Tiff Fehr, Andrew Fischer, Matt Furber, Rich Harris, Lauryn Higgins, Jake Holland, Will Houp, Jon Huang, Danya Issawi, Jacob LaGesse, Hugh Mandeville, Patricia Mazzei, Allison McCann, Jesse McKinley, Miles McKinley, Sarah Mervosh, Andrea Michelson, Blacki Migliozzi, Steven Moity, Richard A. Oppel Jr., Jugal K. Patel, Nina Pavlich, Azi Paybarah, Sean Plambeck, Carrie Price, Scott Reinhard, Thomas Rivas, Michael Robles, Alison Saldanha, Alex Schwartz, Libby Seline, Shelly Seroussi, Rachel Shorey, Anjali Singhvi, Charlie Smart, Ben Smithgall, Steven Speicher, Michael Strickland, Albert Sun, Thu Trinh, Tracey Tully, Maura Turcotte, Miles Watkins, Jeremy White, Josh Williams, and Jin Wu.

    Context

    There's a story behind every dataset and here's your opportunity to share yours.# Coronavirus (Covid-19) Data in the United States

    [ U.S. State-Level Data ([Raw

  18. I

    Data for Spatial Accessibility to HIV (Human Immunodeficiency Virus)...

    • databank.illinois.edu
    Updated Aug 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data for Spatial Accessibility to HIV (Human Immunodeficiency Virus) Testing, Treatment, and Prevention Services in Illinois and Chicago, USA [Dataset]. https://databank.illinois.edu/datasets/IDB-9096476
    Explore at:
    Dataset updated
    Aug 9, 2022
    Authors
    Jeon-Young Kang; Bita Fayaz Farkhad; Man-pui Sally Chan; Alexander Michels; Dolores Albarracin; Shaowen Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Chicago, Illinois
    Dataset funded by
    U.S. National Science Foundation (NSF)
    U.S. National Institutes of Health (NIH)
    Description

    This dataset helps to investigate the Spatial Accessibility to HIV Testing, Treatment, and Prevention Services in Illinois and Chicago, USA. The main components are: population data, healthcare data, GTFS feeds, and road network data. The core components are: 1) GTFS which contains GTFS (General Transit Feed Specification) data which is provided by Chicago Transit Authority (CTA) from Google's GTFS feeds. Documentation defines the format and structure of the files that comprise a GTFS dataset: https://developers.google.com/transit/gtfs/reference?csw=1. 2) HealthCare contains shapefiles describing HIV healthcare providers in Chicago and Illinois respectively. The services come from Locator.HIV.gov. 3) PopData contains population data for Chicago and Illinois respectively. Data come from The American Community Survey and AIDSVu. AIDSVu (https://map.aidsvu.org/map) provides data on PLWH in Chicago at the census tract level for the year 2017 and in the State of Illinois at the county level for the year 2016. The American Community Survey (ACS) provided the number of people aged 15 to 64 at the census tract level for the year 2017 and at the county level for the year 2016. The ACS provides annually updated information on demographic and socio economic characteristics of people and housing in the U.S. 4) RoadNetwork contains the road networks for Chicago and Illinois respectively from OpenStreetMap using the Python osmnx package. The abstract for our paper is: Accomplishing the goals outlined in “Ending the HIV (Human Immunodeficiency Virus) Epidemic: A Plan for America Initiative” will require properly estimating and increasing access to HIV testing, treatment, and prevention services. In this research, a computational spatial method for estimating access was applied to measure distance to services from all points of a city or state while considering the size of the population in need for services as well as both driving and public transportation. Specifically, this study employed the enhanced two-step floating catchment area (E2SFCA) method to measure spatial accessibility to HIV testing, treatment (i.e., Ryan White HIV/AIDS program), and prevention (i.e., Pre-Exposure Prophylaxis [PrEP]) services. The method considered the spatial location of MSM (Men Who have Sex with Men), PLWH (People Living with HIV), and the general adult population 15-64 depending on what HIV services the U.S. Centers for Disease Control (CDC) recommends for each group. The study delineated service- and population-specific accessibility maps, demonstrating the method’s utility by analyzing data corresponding to the city of Chicago and the state of Illinois. Findings indicated health disparities in the south and the northwest of Chicago and particular areas in Illinois, as well as unique health disparities for public transportation compared to driving. The methodology details and computer code are shared for use in research and public policy.

  19. SNOMED CT Full Simple Map Reference Set

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). SNOMED CT Full Simple Map Reference Set [Dataset]. https://www.johnsnowlabs.com/marketplace/snomed-ct-full-simple-map-reference-set/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Area covered
    United States
    Description

    This dataset describes the Release File structure of SNOMED CT, referred to as Release Format 2 (RF2). The US Edition of SNOMED CT is the official source of SNOMED CT for use in US healthcare systems. The US Edition is a standalone release that combines the content of both the US Extension and the International release of SNOMED CT.

    A Simple Map Reference set is used to represent one-to-one maps between SNOMED CT concepts and codes in another terminology, classification or code system.

  20. Meningococcal disease cases identified by HealthMap alerts.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S. Sohail Ahmed; Ernesto Oviedo-Orta; Sumiko R. Mekaru; Clark C. Freifeld; Gervais Tougas; John S. Brownstein (2023). Meningococcal disease cases identified by HealthMap alerts. [Dataset]. http://doi.org/10.1371/journal.pone.0127406.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    S. Sohail Ahmed; Ernesto Oviedo-Orta; Sumiko R. Mekaru; Clark C. Freifeld; Gervais Tougas; John S. Brownstein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example of community-identified and reported meningitis outbreaks in the United States in a four-year period. Based on the source of information and the stage of the outbreak, HealthMap is able to provide geographical and numerical information on cases and also displays information related to disease-causing serotype (when available).Meningococcal disease cases identified by HealthMap alerts.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Urban Observatory by Esri (2018). Infant Mortality in the U.S. [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/63072acf02734741868b0ff5b55c4dc3
Organization logo

Data from: Infant Mortality in the U.S.

Related Article
Explore at:
Dataset updated
May 10, 2018
Dataset provided by
Esrihttp://esri.com/
Authors
Urban Observatory by Esri
Area covered
Description

This map shows the infant mortality rate and total number of infant deaths. This is shown by county, state, and country from the 2022 County Health Rankings. The national average is 5.7 deaths per 1,000.The data comes from the County Health Rankings 2022 layer. The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.

Search
Clear search
Close search
Google apps
Main menu