100+ datasets found
  1. Housing affordability index in the U.S. 2000-2024

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Housing affordability index in the U.S. 2000-2024 [Dataset]. https://www.statista.com/statistics/201568/change-in-the-composite-us-housing-affordability-index-since-1975/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Housing Affordability Index value in the United States plummeted in 2022, surpassing the historical record of ***** index points in 2006. In 2024, the housing affordability index measured **** index points, making it the second-worst year for homebuyers since the start of the observation period. What does the Housing Affordability Index mean? The Housing Affordability Index uses data provided by the National Association of Realtors (NAR). It measures whether a family earning the national median income can afford the monthly mortgage payments on a median-priced existing single-family home. An index value of 100 means that a family has exactly enough income to qualify for a mortgage on a home. The higher the index value, the more affordable a house is to a family. Key factors that drive the real estate market Income, house prices, and mortgage rates are some of the most important factors influencing homebuyer sentiment. When incomes increase, consumer power also increases. The median household income in the United States declined in 2022, affecting affordability. Additionally, mortgage interest rates have soared, adding to the financial burden of homebuyers. The sales price of existing single-family homes in the U.S. has increased year-on-year since 2011 and reached ******* U.S. dollars in 2023.

  2. F

    Housing Affordability Index (Fixed)

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Affordability Index (Fixed) [Dataset]. https://fred.stlouisfed.org/series/FIXHAI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Housing Affordability Index (Fixed) (FIXHAI) from May 2024 to May 2025 about fixed, housing, indexes, and USA.

  3. Housing Affordability Data System (HADS)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Housing Affordability Data System (HADS) [Dataset]. https://catalog.data.gov/dataset/housing-affordability-data-system-hads
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    The Housing Affordability Data System (HADS) is a set of files derived from the 1985 and later national American Housing Survey (AHS) and the 2002 and later Metro AHS. This system categorizes housing units by affordability and households by income, with respect to the Adjusted Median Income, Fair Market Rent (FMR), and poverty income. It also includes housing cost burden for owner and renter households. These files have been the basis for the worst case needs tables since 2001. The data files are available for public use, since they were derived from AHS public use files and the published income limits and FMRs. These dataset give the community of housing analysts the opportunity to use a consistent set of affordability measures. The most recent year HADS is available as a Public Use File (PUF) is 2013. For 2015 and beyond, HADS is only available as an IUF and can no longer be released on a PUF. Those seeking access to more recent data should reach to the listed point of contact.

  4. United States Housing Affordability Index: Fixed

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States Housing Affordability Index: Fixed [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index/housing-affordability-index-fixed
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2017 - Feb 1, 2018
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States Housing Affordability Index: Fixed data was reported at 146.900 NA in Oct 2018. This records a decrease from the previous number of 147.400 NA for Sep 2018. United States Housing Affordability Index: Fixed data is updated monthly, averaging 127.900 NA from Jan 1989 (Median) to Oct 2018, with 357 observations. The data reached an all-time high of 212.800 NA in Jan 2013 and a record low of 97.600 NA in May 1989. United States Housing Affordability Index: Fixed data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.

  5. a

    Housing Affordability Index in the United States-Copy-Copy-Copy-Copy-Copy

    • uscssi.hub.arcgis.com
    Updated Nov 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). Housing Affordability Index in the United States-Copy-Copy-Copy-Copy-Copy [Dataset]. https://uscssi.hub.arcgis.com/maps/799e364bc9ef4d1a8c1f725a71d280e4
    Explore at:
    Dataset updated
    Nov 10, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    This map uses a two-color thematic shading to emphasize where areas experience the least to the most affordable housing across the US. This web map is part of the How Affordable is the American Dream story map.

    Esri’s Housing Affordability Index (HAI) is a powerful tool to analyze local real estate markets. Esri’s housing affordability index measures the financial ability of a typical household to purchase an existing home in an area. A HAI of 100 represents an area that on average has sufficient household income to qualify for a loan on a home valued at the median home price. An index greater than 100 suggests homes are easily afforded by the average area resident. A HAI less than 100 suggests that homes are less affordable. The housing affordability index is not applicable in areas with no households or in predominantly rental markets . Esri’s home value estimates cover owner-occupied homes only. For a full demographic analysis of US growth refer to Esri's Trending in 2017: The Selectivity of Growth.

    The pop-up is configured to show the following 2017 demographics for each County and ZIP Code:

    Total Households 2010-17 Annual Pop Change Median Age Percent Owner-Occupied Housing Units Median Household Income Median Home Value Housing Affordability Index Share of Income to Mortgage

  6. Housing affordability among Millennials in the U.S. 2015, by city

    • statista.com
    Updated Jun 8, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2015). Housing affordability among Millennials in the U.S. 2015, by city [Dataset]. https://www.statista.com/statistics/418607/millenial-housing-affordability-by-city-usa/
    Explore at:
    Dataset updated
    Jun 8, 2015
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2015
    Area covered
    United States
    Description

    This statistic presents the housing affordability index among Millennials in the United States as of June 2015, by city. The index presents how much money the Millennials need to earn per year in order to be able to buy a house in a given city, basing on the difference between house prices and the Millennials' earnings in the given area. The Millennials who want to buy a house in San Jose need to earn 80,162 U.S. dollars more per year to afford an average house mortgage.

  7. United States Housing Affordability Index: Median Family Income

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Housing Affordability Index: Median Family Income [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index/housing-affordability-index-median-family-income
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2017 - Feb 1, 2018
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States Housing Affordability Index: Median Family Income data was reported at 77,021.000 USD in Oct 2018. This records an increase from the previous number of 76,754.000 USD for Sep 2018. United States Housing Affordability Index: Median Family Income data is updated monthly, averaging 53,251.500 USD from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 77,021.000 USD in Oct 2018 and a record low of 33,287.000 USD in Jan 1989. United States Housing Affordability Index: Median Family Income data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.

  8. Housing Affordability Data System (HADS), 2004

    • icpsr.umich.edu
    • search.datacite.org
    ascii, delimited, sas +2
    Updated Oct 29, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vandenbroucke, David A. (2009). Housing Affordability Data System (HADS), 2004 [Dataset]. http://doi.org/10.3886/ICPSR25204.v1
    Explore at:
    spss, delimited, ascii, sas, stataAvailable download formats
    Dataset updated
    Oct 29, 2009
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Vandenbroucke, David A.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/25204/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/25204/terms

    Time period covered
    2004
    Area covered
    Oklahoma, Washington, United States, Hartford, Connecticut, Pittsburgh, Ohio, Cleveland, Missouri, Pennsylvania
    Description

    The Housing Affordability Data System (HADS) is a set of housing unit level datasets that measures the affordability of housing units and the housing cost burdens of households, relative to area median incomes, poverty level incomes, and Fair Market Rents. The purpose of these datasets is to provide housing analysts with consistent measures of affordability and burdens over a long period. The datasets are based on the American Housing Survey (AHS) national files from 1985 through 2005 and the metropolitan files for 2002 and 2004. Users can link records in HADS files to AHS records, allowing access to all of the AHS variables. Housing-level variables include information on the number of rooms in the housing unit, the year the unit was built, whether it was occupied or vacant, whether the unit was rented or owned, whether it was a single family or multiunit structure, the number of units in the building, the current market value of the unit, and measures of relative housing costs. The dataset also includes variables describing the number of people living in the household, household income, and the type of residential area (e.g., urban or suburban).

  9. Data from: Comprehensive Housing Affordability Strategy (CHAS)

    • catalog.data.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Comprehensive Housing Affordability Strategy (CHAS) [Dataset]. https://catalog.data.gov/dataset/comprehensive-housing-affordability-strategy-chas-2008-2010
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    The U.S. Department of Housing and Urban Development (HUD) periodically receives custom tabulations of data from the U.S. Census Bureau that are largely not available through standard Census products. These data, known as the CHAS data (Comprehensive Housing Affordability Strategy), demonstrate the extent of housing problems and housing needs, particularly for low income households. The CHAS data are used by local governments to plan how to spend HUD funds, and may also be used by HUD to distribute grant funds

  10. C

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/el/dataset/housing-affordability
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  11. Main reasons for buying a home U.S. 2024

    • statista.com
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Main reasons for buying a home U.S. 2024 [Dataset]. https://www.statista.com/topics/1618/residential-housing-in-the-us/
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The primary reasons for purchasing a home in the United States in 2024 varied among home buyers. Approximately one in four homebuyers bought a home because they desired to have their own home. Having one's own home was mainly considered by millennial buyers during their home buying process.

  12. T

    Vital Signs: Housing Affordability - County by Income (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Housing Affordability - County by Income (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Housing-Affordability-County-by-Income/va7e-4jn9
    Explore at:
    csv, application/rdfxml, tsv, xml, json, application/rssxmlAvailable download formats
    Dataset updated
    Jan 3, 2023
    Description

    VITAL SIGNS INDICATOR
    Housing Affordability (EQ2)

    FULL MEASURE NAME
    Housing Affordability

    LAST UPDATED
    December 2022

    DATA SOURCE
    U.S. Census Bureau: Decennial Census - https://nhgis.org
    Form STF3 – https://nhgis.org (1980-1990)
    Form SF3a – https://nhgis.org (2000)

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    Form B25074 (2009-2021)
    Form B25095 (2009-2021)

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    The share of income brackets used for different Census and American Community Survey (ACS) forms vary over time. To allow for historical comparisons, the Census Bureau merges housing expenditure brackets into three consistent bins (less than 20 percent, 20 percent to 34 percent, and more than 35 percent) that work for all years. The highest income bracket for renters in the ACS data was $100,000 or more, while the homeowner dataset included brackets for $100,000 to $149,999 and $150,000 and above. These brackets were merged together to allow for uniform comparison across tenure. While some studies use 30 percent as the affordability threshold, Vital Signs uses 35 percent as this is the closest break point using the standardized affordability brackets above.

    ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    Income breakdown data is only provided for one year as it is not possible to compare consistent inflation-adjusted income brackets over time given Census data limitations. For the county breakdown, Napa was missing ACS 1-Year renter data for all years except 2012 and 2013, and Marin was missing ACS 1-Year renter data for 2019 — these counties used 5-Year data for those years.

  13. a

    Housing Affordability (by Atlanta City Council District) 2019

    • hub.arcgis.com
    • gisdata.fultoncountyga.gov
    • +2more
    Updated Mar 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Housing Affordability (by Atlanta City Council District) 2019 [Dataset]. https://hub.arcgis.com/datasets/0d7d848e7d1c415fb16eb834248a43f2
    Explore at:
    Dataset updated
    Mar 1, 2021
    Dataset authored and provided by
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  14. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  15. a

    ACS 5YR CHAS Estimate Data by Tract (Pima County)

    • cotgis.hub.arcgis.com
    Updated Oct 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2023). ACS 5YR CHAS Estimate Data by Tract (Pima County) [Dataset]. https://cotgis.hub.arcgis.com/maps/cotgis::acs-5yr-chas-estimate-data-by-tract-pima-county
    Explore at:
    Dataset updated
    Oct 10, 2023
    Dataset authored and provided by
    City of Tucson
    Area covered
    Pima County,
    Description

    The U.S. Department of Housing and Urban Development (HUD) periodically receives "custom tabulations" of Census data from the U.S. Census Bureau that are largely not available through standard Census products. These datasets, known as "CHAS" (Comprehensive Housing Affordability Strategy) data, demonstrate the extent of housing problems and housing needs, particularly for low income households. The primary purpose of CHAS data is to demonstrate the number of households in need of housing assistance. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income). CHAS data provides counts of the numbers of households that fit these HUD-specified characteristics in a variety of geographic areas. In addition to estimating low-income housing needs, CHAS data contributes to a more comprehensive market analysis by documenting issues like lead paint risks, "affordability mismatch," and the interaction of affordability with variables like age of homes, number of bedrooms, and type of building. This dataset is a special tabulation of the 2016-2020 American Community Survey (ACS) and reflects conditions over that time period. The data set uses custom HUD Area Median Family Income (HAMFI) figures calculated by HUD PDR staff based on 2016-2020 ACS income data. CHAS datasets are used by Federal, State, and Local governments to plan how to spend, and distribute HUD program funds. To learn more about the Comprehensive Housing Affordability Strategy (CHAS), visit: https://www.huduser.gov/portal/datasets/cp.html To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs Data Dictionary: DD_ACS 5-Year CHAS Estimate Data by Tract Date of Coverage: 2016-2020

  16. United States Housing Affordability Index: Monthly Principal and Interest...

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Housing Affordability Index: Monthly Principal and Interest Payment [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index/housing-affordability-index-monthly-principal-and-interest-payment
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2017 - Feb 1, 2018
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States Housing Affordability Index: Monthly Principal and Interest Payment data was reported at 1,092.000 USD in Oct 2018. This records an increase from the previous number of 1,085.000 USD for Sep 2018. United States Housing Affordability Index: Monthly Principal and Interest Payment data is updated monthly, averaging 783.000 USD from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 1,207.000 USD in Jul 2006 and a record low of 568.000 USD in Feb 1994. United States Housing Affordability Index: Monthly Principal and Interest Payment data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.

  17. House price to income ratio index in the U.S. 2012-2024, by quarter

    • statista.com
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price to income ratio index in the U.S. 2012-2024, by quarter [Dataset]. https://www.statista.com/statistics/591435/house-price-to-income-ratio-usa/
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The house price to income ratio in the United States has reached concerning levels, with the index hitting ***** in the fourth quarter of 2024. This indicates that house prices have outpaced income growth by over ** percent since 2015, highlighting a growing affordability crisis in the housing market. The widening gap between home prices and wages is putting homeownership out of reach for many Americans, particularly as real wages have remained stagnant. Rising home prices and stagnant wages While average annual real wages in the United States have increased slightly since 2014, home prices have soared. The median sales price of existing single-family homes reached a record-high in 2024, representing a substantial increase over the past five years. This disparity between wage growth and home price appreciation has led to a significant decrease in housing affordability across the country. Affordability challenges in the U.S. housing market The U.S. Housing Affordability Index, which measures whether a family earning the median income can afford a median-priced home, plummeted in 2024, marking the second-worst year for homebuyers since records began. This decline in affordability is reflected in homebuyer sentiment, with homebuyer sentiment plummeting.

  18. United States HAI: First Time: Starter Home Price

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States HAI: First Time: Starter Home Price [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index-first-time-buyers/hai-first-time-starter-home-price
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2015 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States HAI: First Time: Starter Home Price data was reported at 226,900.000 USD in Sep 2018. This records a decrease from the previous number of 227,800.000 USD for Jun 2018. United States HAI: First Time: Starter Home Price data is updated quarterly, averaging 119,900.000 USD from Mar 1981 (Median) to Sep 2018, with 151 observations. The data reached an all-time high of 227,800.000 USD in Jun 2018 and a record low of 54,700.000 USD in Mar 1981. United States HAI: First Time: Starter Home Price data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB019: Housing Affordability Index: First Time Buyers.

  19. United States Housing Affordability Index: Mortgage Rate

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Housing Affordability Index: Mortgage Rate [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index/housing-affordability-index-mortgage-rate
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2017 - Feb 1, 2018
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States Housing Affordability Index: Mortgage Rate data was reported at 4.770 % in Sep 2018. This records a decrease from the previous number of 4.780 % for Aug 2018. United States Housing Affordability Index: Mortgage Rate data is updated monthly, averaging 6.470 % from Jan 1989 (Median) to Sep 2018, with 357 observations. The data reached an all-time high of 10.590 % in Jun 1989 and a record low of 3.430 % in Dec 2012. United States Housing Affordability Index: Mortgage Rate data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.

  20. United States Housing Affordability Index: Median Price

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Housing Affordability Index: Median Price [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index/housing-affordability-index-median-price
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2017 - Feb 1, 2018
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States Housing Affordability Index: Median Price data was reported at 260,500.000 USD in Sep 2018. This records a decrease from the previous number of 268,200.000 USD for Aug 2018. United States Housing Affordability Index: Median Price data is updated monthly, averaging 167,800.000 USD from Jan 1989 (Median) to Sep 2018, with 357 observations. The data reached an all-time high of 276,500.000 USD in Jun 2018 and a record low of 90,300.000 USD in Jan 1989. United States Housing Affordability Index: Median Price data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Housing affordability index in the U.S. 2000-2024 [Dataset]. https://www.statista.com/statistics/201568/change-in-the-composite-us-housing-affordability-index-since-1975/
Organization logo

Housing affordability index in the U.S. 2000-2024

Explore at:
Dataset updated
Jun 20, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The Housing Affordability Index value in the United States plummeted in 2022, surpassing the historical record of ***** index points in 2006. In 2024, the housing affordability index measured **** index points, making it the second-worst year for homebuyers since the start of the observation period. What does the Housing Affordability Index mean? The Housing Affordability Index uses data provided by the National Association of Realtors (NAR). It measures whether a family earning the national median income can afford the monthly mortgage payments on a median-priced existing single-family home. An index value of 100 means that a family has exactly enough income to qualify for a mortgage on a home. The higher the index value, the more affordable a house is to a family. Key factors that drive the real estate market Income, house prices, and mortgage rates are some of the most important factors influencing homebuyer sentiment. When incomes increase, consumer power also increases. The median household income in the United States declined in 2022, affecting affordability. Additionally, mortgage interest rates have soared, adding to the financial burden of homebuyers. The sales price of existing single-family homes in the U.S. has increased year-on-year since 2011 and reached ******* U.S. dollars in 2023.

Search
Clear search
Close search
Google apps
Main menu