Annual Housing Unit Estimates for the United States, States, and Counties: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 housing units due to the Count Question Resolution program and geographic program revisions // Each year, the Census Bureau's Population and Housing Unit Estimates Program utilizes current data on new residential construction, placements of manufactured housing, and housing unit loss to calculate change in the housing stock since the most recent decennial census, and produces a time series of housing unit estimates. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.
The number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
The U.S. Department of Housing and Urban Development (HUD) periodically receives "custom tabulations" of Census data from the U.S. Census Bureau that are largely not available through standard Census products. These datasets, known as "CHAS" (Comprehensive Housing Affordability Strategy) data, demonstrate the extent of housing problems and housing needs, particularly for low income households. The primary purpose of CHAS data is to demonstrate the number of households in need of housing assistance. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income). CHAS data provides counts of the numbers of households that fit these HUD-specified characteristics in a variety of geographic areas. In addition to estimating low-income housing needs, CHAS data contributes to a more comprehensive market analysis by documenting issues like lead paint risks, "affordability mismatch," and the interaction of affordability with variables like age of homes, number of bedrooms, and type of building.This dataset is a special tabulation of the 2016-2020 American Community Survey (ACS) and reflects conditions over that time period. The dataset uses custom HUD Area Median Family Income (HAMFI) figures calculated by HUD PDR staff based on 2016-2020 ACS income data. CHAS datasets are used by Federal, State, and Local governments to plan how to spend, and distribute HUD program funds. To learn more about the Comprehensive Housing Affordability Strategy (CHAS), visit: https://www.huduser.gov/portal/datasets/cp.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs Data Dictionary: DD_ACS 5-Year CHAS Estimate Data by County Date of Coverage: 2016-2020
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in Okaloosa County, FL (MEDDAYONMAR12091) from Jul 2016 to Jun 2025 about Okaloosa County, FL; FL; median; and USA.
House prices grew year-on-year in most states in the U.S. in the third quarter of 2024. The District of Columbia was the only exception, with a decline of ***** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Hawaii—the state where homes appreciated the most—the increase exceeded ** percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2024, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2024.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in the United States (MEDDAYONMARUS) from Jul 2016 to Jun 2025 about median and USA.
Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to inform development of the City's new Comprehensive Plan, Rochester 2034, and retained czb, LLC – a firm with national expertise based in Alexandria, VA – to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. Importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long recognized that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/Dictionary: STATEFP10: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state in the 2010 census. New York State is 36. COUNTYFP10: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county in the 2010 census. Monroe County is 055. TRACTCE10: The six-digit number assigned to each census tract in a US county in the 2010 census. BLKGRPCE10: The single-digit number assigned to each block group within a census tract. The number does not indicate ranking or quality, simply the label used to organize the data. GEOID10: A unique geographic identifier based on 2010 Census geography, typically as a concatenation of State FIPS code, County FIPS code, Census tract code, and Block group number. NAMELSAD10: Stands for Name, Legal/Statistical Area Description 2010. A human-readable field for BLKGRPCE10 (Block Groups). MTFCC10: Stands for MAF/TIGER Feature Class Code 2010. For this dataset, G5030 represents the Census Block Group. BLKGRP: The GEOID that identifies a specific block group in each census tract. TYPOLOGYFi: The point system for Block Groups. Lower scores indicate higher levels of demand – including housing values and value appreciation that are above the Rochester average and vulnerabilities to distress that are below average. Higher scores indicate lower levels of demand – including housing values and value appreciation that are below the Rochester average and above presence of distressed or vulnerable properties. Points range from 1.0 to 3.0. For more information on how the points are calculated, view page 16 on the Rochester Citywide Housing Study 2018. Shape_Leng: The built-in geometry field that holds the length of the shape. Shape_Area: The built-in geometry field that holds the area of the shape. Shape_Length: The built-in geometry field that holds the length of the shape. Source: This data comes from the City of Rochester Department of Neighborhood and Business Development.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in Orange County, CA (MEDDAYONMAR6059) from Jul 2016 to Jun 2025 about Orange County, CA; Los Angeles; CA; median; and USA.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in Sussex County, DE (MEDDAYONMAR10005) from Jul 2016 to Jun 2025 about Sussex County, DE; DE; median; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Inventory: Median Days on Market in Volusia County, FL was 69.00000 Level in April of 2025, according to the United States Federal Reserve. Historically, Housing Inventory: Median Days on Market in Volusia County, FL reached a record high of 92.00000 in December of 2016 and a record low of 28.00000 in May of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for Housing Inventory: Median Days on Market in Volusia County, FL - last updated from the United States Federal Reserve on May of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Inventory: Median Days on Market in Clackamas County, OR was 44.00000 Level in April of 2025, according to the United States Federal Reserve. Historically, Housing Inventory: Median Days on Market in Clackamas County, OR reached a record high of 82.00000 in January of 2025 and a record low of 23.00000 in April of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for Housing Inventory: Median Days on Market in Clackamas County, OR - last updated from the United States Federal Reserve on May of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Inventory: Median Days on Market Month-Over-Month in Linn County, OR was -3.85% in April of 2025, according to the United States Federal Reserve. Historically, Housing Inventory: Median Days on Market Month-Over-Month in Linn County, OR reached a record high of 63.49 in September of 2021 and a record low of -60.56 in February of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for Housing Inventory: Median Days on Market Month-Over-Month in Linn County, OR - last updated from the United States Federal Reserve on May of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Inventory: Median Days on Market in Otsego County, NY was 56.00000 Level in May of 2025, according to the United States Federal Reserve. Historically, Housing Inventory: Median Days on Market in Otsego County, NY reached a record high of 159.00000 in March of 2017 and a record low of 39.00000 in June of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for Housing Inventory: Median Days on Market in Otsego County, NY - last updated from the United States Federal Reserve on July of 2025.
Data are updated semiannually, at the end of the second and fourth quarters of each year.
Please see DCP’s annual Housing Production Snapshot summarizing findings from the 21Q4 data release here. Additional Housing and Economic analyses are also available.
The NYC Department of City Planning’s (DCP) Housing Database Unit Change Summary Files provide the net change in Class A housing units since 2010, and the count of units pending completion for commonly used political and statistical boundaries (Census Block, Census Tract, City Council district, Community District, Community District Tabulation Area (CDTA), Neighborhood Tabulation Area (NTA). These tables are aggregated from the DCP Housing Database Project-Level Files, which is derived from Department of Buildings (DOB) approved housing construction and demolition jobs filed or completed in NYC since January 1, 2010. Net housing unit change is calculated as the sum of all three construction job types that add or remove residential units: new buildings, major alterations, and demolitions. These files can be used to determine the change in legal housing units across time and space.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in Lee County, FL (MEDDAYONMAR12071) from Jul 2016 to May 2025 about Lee County, FL; Cape Coral; FL; median; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Inventory: Median Days on Market in Linn County, OR was 47.00000 Level in May of 2025, according to the United States Federal Reserve. Historically, Housing Inventory: Median Days on Market in Linn County, OR reached a record high of 88.00000 in January of 2018 and a record low of 16.00000 in August of 2021. Trading Economics provides the current actual value, an historical data chart and related indicators for Housing Inventory: Median Days on Market in Linn County, OR - last updated from the United States Federal Reserve on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Inventory: Median Days on Market Year-Over-Year in Boulder County, CO was 9.33% in December of 2024, according to the United States Federal Reserve. Historically, Housing Inventory: Median Days on Market Year-Over-Year in Boulder County, CO reached a record high of 143.08 in January of 2023 and a record low of -73.97 in February of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for Housing Inventory: Median Days on Market Year-Over-Year in Boulder County, CO - last updated from the United States Federal Reserve on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in Monmouth County, NJ (MEDDAYONMAR34025) from Jul 2016 to Jun 2025 about Monmouth County, NJ; NJ; New York; median; and USA.
Annual Housing Unit Estimates for the United States, States, and Counties: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 housing units due to the Count Question Resolution program and geographic program revisions // Each year, the Census Bureau's Population and Housing Unit Estimates Program utilizes current data on new residential construction, placements of manufactured housing, and housing unit loss to calculate change in the housing stock since the most recent decennial census, and produces a time series of housing unit estimates. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.