Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Fertility Rate: Total: Births per Woman data was reported at 1.800 Ratio in 2016. This records a decrease from the previous number of 1.843 Ratio for 2015. United States US: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 2.002 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 3.654 Ratio in 1960 and a record low of 1.738 Ratio in 1976. United States US: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Facebook
TwitterSince 1960, the U.S. Department of Agriculture has provided estimates of expenditures on children from birth through age 17. This technical report presents the most recent estimates for married- couple and single-parent families using data from the 2011-15 Consumer Expenditure Survey (all data presented in 2015 dollars). Data and methods used in calculating annual child-rearing expenses are described. Estimates are provided for married-couple and single-parent families with two children for major components of the budget by age of child, family income, and region of residence. For the overall United States, annual child-rearing expense estimates ranged between $12,350 and $13,900 for a child in a two-child, married-couple family in the middle-income group. Adjustment factors for households with less than or greater than two children are also provided. Expenses vary considerably by household income level, region, and composition, emphasizing that a single estimate may not be applicable to all families. Results of this study may be of use in developing State child support and foster care guidelines, as well as public health and family-centered educational programs. i
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Portugal PT: Fertility Rate: Total: Births per Woman data was reported at 1.310 Ratio in 2016. This stayed constant from the previous number of 1.310 Ratio for 2015. Portugal PT: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 1.610 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 3.230 Ratio in 1962 and a record low of 1.210 Ratio in 2013. Portugal PT: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Portugal – Table PT.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset contains Iowa households with and without children under 18 years old by household type for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B11005.
Household type includes Total Households, Family - All Types, Family - Married Couple, Family - All Single Householders, Family - Male Householder - No Wife Present, Family - Female Householder - No Husband Present, Nonfamily - All Types, Nonfamily - Male Householder, Nonfamily - Female Householder, Total Households w/Minors, and Total Households w/o Minors.
A family household is a household maintained by a householder who is in a family. A family group is defined as any two or more people residing together, and related by birth, marriage, or adoption.
Householder refers to the person (or one of the people) in whose name the housing unit is owned or rented (maintained) or, if there is no such person, any adult member, excluding roomers, boarders, or paid employees. If the house is owned or rented jointly by a married couple, the householder may be either the husband or the wife.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides valuable insights into the work and household characteristics of married individuals in the United States. With 753 observations representing individuals, the dataset offers a comprehensive view of various factors that influence work patterns and family dynamics.
| Column | Description |
|---|---|
| work | Work at home in 1975? (Same as labor force participation) |
| hoursw | Wife's hours of work in 1975 |
| child6 | Number of children less than 6 years old in household |
| child618 | Number of children between ages 6 and 18 in household |
| agew | Wife's age |
| educw | Wife's educational attainment, in years |
| hearnw | Wife's average hourly earnings, in 1975 dollars |
| wagew | Wife's wage reported at the time of the 1976 interview |
| hoursh | Husband's hours worked in 1975 |
| ageh | Husband's age |
| educh | Husband's educational attainment, in years |
| wageh | Husband's wage, in 1975 dollars |
| income | Family income, in 1975 dollars |
| educwm | Wife's mother's educational attainment, in years |
| educwf | Wife's father's educational attainment, in years |
| unemprate | Unemployment rate in county of residence, in percentage points |
| city | Lives in a large city (SMSA)? |
| experience | Actual years of wife's previous labor market experience |
These data seem to have come from the same source as carData::Mroz, though each data set has variables not in the other. The variables that are shared have different names. On 2019-11-04 Bruno Rodrigues explained that Ecdat::Mroz['work'] had the two labels incorrectly swapped, and wooldridge::mroz['inlf'] was correct; wooldridge matches carData::Mroz['lfp'].
Mroz, T. (1987) “The sensitivity of an empirical model of married women's hours of work to economic and statistical assumptions”, Econometrica, 55, 765-799. 1976 Panel Study of Income Dynamics.
Greene, W.H. (2003) Econometric Analysis, Prentice Hall, https://archive.org/details/econometricanaly0000gree_f4x3, Table F4.1.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Montenegro ME: Fertility Rate: Total: Births per Woman data was reported at 1.667 Ratio in 2016. This records a decrease from the previous number of 1.677 Ratio for 2015. Montenegro ME: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 2.104 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 3.603 Ratio in 1960 and a record low of 1.667 Ratio in 2016. Montenegro ME: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Montenegro – Table ME.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38538/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38538/terms
The Child Care and Development Fund (CCDF) provides federal money to states and territories to provide assistance to low-income families, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, states and territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of CCDF policy information that supports the needs of a variety of audiences through (1) analytic data files, (2) a project website and search tool, and (3) an annual report (Book of Tables). These resources are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of child care subsidy policies and practices on the children and families served. A description of the data files, project website and search tool, and Book of Tables is provided below: 1. Detailed, longitudinal analytic data files provide CCDF policy information for all 50 States, the District of Columbia, and the United States Territories and outlying areas that capture the policies actually in effect at a point in time, rather than proposals or legislation. They capture changes throughout each year, allowing users to access the policies in place at any point in time between October 2009 and the most recent data release. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the data files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the CCDF Plans submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between CCDF Plan dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Most variables have a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. 2. The project website and search tool provide access to a point-and-click user interface. Users can select from the full set of public data to create custom tables. The website also provides access to the full range of reports and products released under the CCDF Policies Database project. The project website and search tool and the data files provide a more detailed set of information than what the Book of Tables provides, including a wider selection of variables and policies over time. 3. The annual Book of Tables provides key policy information for October 1 of each year. The report presents policy variations across the states and territories and is available on the project website. The Book of Tables summarizes a subset of the information available in the full database and data files, and includes information about eligibility requirements for families; application, redetermination, priority, and waiting list policies; family co-payments; and provider policies and reimbursement rates. In many cases, a variable in the Book of Tables will correspond to a single variable in the data files. Usuall
Facebook
TwitterThis dataset includes percent distribution of births for females by age group in the United States since 1933.
The number of states in the reporting area differ historically. In 1915 (when the birth registration area was established), 10 states and the District of Columbia reported births; by 1933, 48 states and the District of Columbia were reporting births, with the last two states, Alaska and Hawaii, added to the registration area in 1959 and 1960, when these regions gained statehood. Reporting area information is detailed in references 1 and 2 below. Trend lines for 1909–1958 are based on live births adjusted for under-registration; beginning with 1959, trend lines are based on registered live births.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Georgia GE: Fertility Rate: Total: Births per Woman data was reported at 1.996 Ratio in 2016. This records a decrease from the previous number of 2.003 Ratio for 2015. Georgia GE: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 2.243 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 2.943 Ratio in 1961 and a record low of 1.586 Ratio in 2002. Georgia GE: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Georgia – Table GE.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mongolia MN: Fertility Rate: Total: Births per Woman data was reported at 2.757 Ratio in 2016. This records a decrease from the previous number of 2.793 Ratio for 2015. Mongolia MN: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 4.644 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 7.599 Ratio in 1966 and a record low of 2.076 Ratio in 2002. Mongolia MN: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mongolia – Table MN.World Bank.WDI: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Facebook
TwitterThis dataset includes teen birth rates for females by age group, race, and Hispanic origin in the United States since 1960. Data availability varies by race and ethnicity groups. All birth data by race before 1980 are based on race of the child. Since 1980, birth data by race are based on race of the mother. For race, data are available for Black and White births since 1960, and for American Indians/Alaska Native and Asian/Pacific Islander births since 1980. Data on Hispanic origin are available since 1989. Teen birth rates for specific racial and ethnic categories are also available since 1989. From 2003 through 2015, the birth data by race were based on the “bridged” race categories (5). Starting in 2016, the race categories for reporting birth data changed; the new race and Hispanic origin categories are: Non-Hispanic, Single Race White; Non-Hispanic, Single Race Black; Non-Hispanic, Single Race American Indian/Alaska Native; Non-Hispanic, Single Race Asian; and, Non-Hispanic, Single Race Native Hawaiian/Pacific Islander (5,6). Birth data by the prior, “bridged” race (and Hispanic origin) categories are included through 2018 for comparison. National data on births by Hispanic origin exclude data for Louisiana, New Hampshire, and Oklahoma in 1989; New Hampshire and Oklahoma in 1990; and New Hampshire in 1991 and 1992. Birth and fertility rates for the Central and South American population includes other and unknown Hispanic. Information on reporting Hispanic origin is detailed in the Technical Appendix for the 1999 public-use natality data file (see ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/Nat1999doc.pdf). SOURCES NCHS, National Vital Statistics System, birth data (see https://www.cdc.gov/nchs/births.htm); public-use data files (see https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES National Office of Vital Statistics. Vital Statistics of the United States, 1950, Volume I. 1954. Available from: https://www.cdc.gov/nchs/data/vsus/vsus_1950_1.pdf. Hetzel AM. U.S. vital statistics system: major activities and developments, 1950-95. National Center for Health Statistics. 1997. Available from: https://www.cdc.gov/nchs/data/misc/usvss.pdf. National Center for Health Statistics. Vital Statistics of the United States, 1967, Volume I–Natality. 1969. Available from: https://www.cdc.gov/nchs/data/vsus/nat67_1.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final data for 2016. National Vital Statistics Reports; vol 67 no 1. Hyattsville, MD: National Center for Health Statistics. 2018. Available from: https://www.cdc.gov/nvsr/nvsr67/nvsr67_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Births: Final data for 2018. National vital statistics reports; vol 68 no 13. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_13.pdf.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data on relationship to householder were derived from answers to Question 2 in the 2015 American Community Survey (ACS), which was asked of all people in housing units. The question on relationship is essential for classifying the population information on families and other groups. Information about changes in the composition of the American family, from the number of people living alone to the number of children living with only one parent, is essential for planning and carrying out a number of federal programs.
The responses to this question were used to determine the relationships of all persons to the householder, as well as household type (married couple family, nonfamily, etc.). From responses to this question, we were able to determine numbers of related children, own children, unmarried partner households, and multi-generational households. We calculated average household and family size. When relationship was not reported, it was imputed using the age difference between the householder and the person, sex, and marital status.
Household – A household includes all the people who occupy a housing unit. (People not living in households are classified as living in group quarters.) A housing unit is a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied (or if vacant, is intended for occupancy) as separate living quarters. Separate living quarters are those in which the occupants live separately from any other people in the building and which have direct access from the outside of the building or through a common hall. The occupants may be a single family, one person living alone, two or more families living together, or any other group of related or unrelated people who share living arrangements.
Average Household Size – A measure obtained by dividing the number of people in households by the number of households. In cases where people in households are cross-classified by race or Hispanic origin, people in the household are classified by the race or Hispanic origin of the householder rather than the race or Hispanic origin of each individual.
Average household size is rounded to the nearest hundredth.
Comparability – The relationship categories for the most part can be compared to previous ACS years and to similar data collected in the decennial census, CPS, and SIPP. With the change in 2008 from “In-law” to the two categories of “Parent-in-law” and “Son-in-law or daughter-in-law,” caution should be exercised when comparing data on in-laws from previous years. “In-law” encompassed any type of in-law such as sister-in-law. Combining “Parent-in-law” and “son-in-law or daughter-in-law” does not represent all “in-laws” in 2008.
The same can be said of comparing the three categories of “biological” “step,” and “adopted” child in 2008 to “Child” in previous years. Before 2008, respondents may have considered anyone under 18 as “child” and chosen that category. The ACS includes “foster child” as a category. However, the 2010 Census did not contain this category, and “foster children” were included in the “Other nonrelative” category. Therefore, comparison of “foster child” cannot be made to the 2010 Census. Beginning in 2013, the “spouse” category includes same-sex spouses.
Facebook
TwitterThis dataset contains counts of live births to California residents by ZIP Code based on information entered on birth certificates. Final counts are derived from static data and include out-of-state births to California residents. The data tables include births to residents of California by ZIP Code of residence (by residence).
Note that ZIP Codes are intended for mail delivery routing and do not represent geographic regions. ZIP Codes are subject to change over time and may not represent the same locations between different time periods. All ZIP Codes in the list of California ZIP Codes used for validation are included for all years, but this does not mean that the ZIP Code was in use at that time.
Facebook
TwitterHousehold is an occupied housing unit. Householder is a person in whose name the housing unit is rented or owned. This person must be at least 15 years old. Family household is a household in which there is at least 1 person present who is related to the householder by birth, marriage or adoption. Family is used to refer to a family household. In general, family consists of those related to each other by birth, marriage or adoption.
This data uses the householder's person weight to describe characteristics of people living in households. As a result, estimates of the number of households do not match estimates of households from the Housing Vacancy Survey (HVS). The HVS is weighted to housing units, rather than the population, in order to more accurately estimate the number of occupied and vacant housing units. For more information about the source and accuracy statement of the Annual Social and Economic Supplement (ASEC) of the Current Population Survey (CPS) see the technical documentation accessible at: http://www.census.gov/programs-surveys/cps/technical-documentation/complete.html
This is a dataset from the U.S. Census Bureau hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according the amount of data that is brought in. Explore the U.S. Census Bureau using Kaggle and all of the data sources available through the U.S. Census Bureau organization page!
Update Frequency: This dataset is updated daily.
Observation Start: 1950-01-01
Observation End : 2019-01-01
This dataset is maintained using FRED's API and Kaggle's API.
Facebook
TwitterBeginning in 2013 and specifically in the first half of 2014, CBP has seen an overall increase in the apprehension of Unaccompanied Alien Children from Central America at the Southwest Border, specifically in the Rio Grande Valley. Family Unit and Unaccompanied Alien Children (0-17) apprehensions FY 14 through June, compared to the same time period for FY 13.
Facebook
TwitterA computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite
Facebook
TwitterNOTE: On October 19, 2021, estimates for 2016–2018 by health insurance status were revised to correct errors. Changes are highlighted and tagged at https://www.cdc.gov/nchs/data/hus/2019/012-508.pdf Data on health conditions among children under age 18, by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Health Interview Survey, Family Core and Sample Child questionnaires. For more information on the National Health Interview Survey, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains adjusted net national income per capita, infant mortality and total fertility rates between 1970 and 2016. It was composed by the datasets taken from the World Bank Data Catalog.
Columns
Country Name
Country Code
Region
m1970, ..., m2016: Mortality rate, infant (per 1,000 live births) between 1970 and 2016
i1970, ..., i2016: Adjusted net national income per capita (current US$) between 1970 and 2016
f1970, ..., f2016: Fertility rate, total (births per woman) between 1970 and 2016
Many thanks to the World Bank Data Catalog (https://datacatalog.worldbank.org/) for sharing numarous organized datasets with us.
Infant mortality, fertility and income per capita are key indicators of a country's population growth and level of development. At first sigh, we all think that these three parameters are highly correlated. So, is that true? Which countries and regions have high and low infant mortality and income per capita? What is the general trend for the parameters between different years?
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Family Type by Presence and Age of Own Children Under 18 Years.Table ID.ACSDT1Y2024.B11003.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, c...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Fertility Rate: Total: Births per Woman data was reported at 1.800 Ratio in 2016. This records a decrease from the previous number of 1.843 Ratio for 2015. United States US: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 2.002 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 3.654 Ratio in 1960 and a record low of 1.738 Ratio in 1976. United States US: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.