In 2023, the Gini index for households of Asian origin in the United States stood at ****. The Census Bureau defines the Gini index as “a statistical measure of income inequality ranging from zero to ***. A measure of *** indicates perfect inequality, i.e., *** household having all the income and rest having none. A measure of zero indicates perfect equality, i.e., all households having an equal share of income.”
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Income Inequality in New York County, NY (2020RATIO036061) from 2010 to 2023 about New York County, NY; inequality; New York; NY; income; and USA.
Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2024 about gini, households, income, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Income Inequality in Denver County, CO was 17.97779 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Denver County, CO reached a record high of 20.23338 in January of 2010 and a record low of 17.13318 in January of 2021. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Denver County, CO - last updated from the United States Federal Reserve on September of 2025.
This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data on redistributive spending in the 50 American states from 1974-2012. Also includes two Gini coefficient measures, economic measures, and demographic measures.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Income Inequality in Broward County, FL was 17.32913 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Broward County, FL reached a record high of 17.32913 in January of 2023 and a record low of 14.78784 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Broward County, FL - last updated from the United States Federal Reserve on September of 2025.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/HEBC6Ghttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/HEBC6G
This file contains data needed to replicate all time series analyses from my book The Politics of Income Inequality in the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in American Fork. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In American Fork, the median income for all workers aged 15 years and older, regardless of work hours, was $54,439 for males and $27,701 for females.
These income figures highlight a substantial gender-based income gap in American Fork. Women, regardless of work hours, earn 51 cents for each dollar earned by men. This significant gender pay gap, approximately 49%, underscores concerning gender-based income inequality in the city of American Fork.
- Full-time workers, aged 15 years and older: In American Fork, among full-time, year-round workers aged 15 years and older, males earned a median income of $71,091, while females earned $50,384, leading to a 29% gender pay gap among full-time workers. This illustrates that women earn 71 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in American Fork.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for American Fork median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Income Inequality in Butler County, PA was 14.33430 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Butler County, PA reached a record high of 14.33430 in January of 2023 and a record low of 11.41731 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Butler County, PA - last updated from the United States Federal Reserve on September of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Income Inequality in Bronx County, NY was 25.92554 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Bronx County, NY reached a record high of 25.92554 in January of 2023 and a record low of 17.84934 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Bronx County, NY - last updated from the United States Federal Reserve on September of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing American Samoa income inequality - gini coefficient by year from N/A to N/A.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Income Inequality in Hood River County, OR (2020RATIO041027) from 2010 to 2023 about Hood River County, OR; inequality; OR; income; and USA.
Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Madison. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Madison, the median income for all workers aged 15 years and older, regardless of work hours, was $69,828 for males and $42,069 for females.
These income figures highlight a substantial gender-based income gap in Madison. Women, regardless of work hours, earn 60 cents for each dollar earned by men. This significant gender pay gap, approximately 40%, underscores concerning gender-based income inequality in the city of Madison.
- Full-time workers, aged 15 years and older: In Madison, among full-time, year-round workers aged 15 years and older, males earned a median income of $95,794, while females earned $69,299, leading to a 28% gender pay gap among full-time workers. This illustrates that women earn 72 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Madison.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Madison median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Richfield. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Richfield, the median income for all workers aged 15 years and older, regardless of work hours, was $41,750 for males and $24,248 for females.
These income figures highlight a substantial gender-based income gap in Richfield. Women, regardless of work hours, earn 58 cents for each dollar earned by men. This significant gender pay gap, approximately 42%, underscores concerning gender-based income inequality in the city of Richfield.
- Full-time workers, aged 15 years and older: In Richfield, among full-time, year-round workers aged 15 years and older, males earned a median income of $58,893, while females earned $43,636, leading to a 26% gender pay gap among full-time workers. This illustrates that women earn 74 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Richfield.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Richfield median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Big Flats town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Big Flats town, the median income for all workers aged 15 years and older, regardless of work hours, was $67,364 for males and $41,824 for females.
These income figures highlight a substantial gender-based income gap in Big Flats town. Women, regardless of work hours, earn 62 cents for each dollar earned by men. This significant gender pay gap, approximately 38%, underscores concerning gender-based income inequality in the town of Big Flats town.
- Full-time workers, aged 15 years and older: In Big Flats town, among full-time, year-round workers aged 15 years and older, males earned a median income of $86,037, while females earned $72,477, leading to a 16% gender pay gap among full-time workers. This illustrates that women earn 84 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Big Flats town.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Flats town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Fort Lauderdale. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Fort Lauderdale, the median income for all workers aged 15 years and older, regardless of work hours, was $49,428 for males and $34,130 for females.
These income figures highlight a substantial gender-based income gap in Fort Lauderdale. Women, regardless of work hours, earn 69 cents for each dollar earned by men. This significant gender pay gap, approximately 31%, underscores concerning gender-based income inequality in the city of Fort Lauderdale.
- Full-time workers, aged 15 years and older: In Fort Lauderdale, among full-time, year-round workers aged 15 years and older, males earned a median income of $66,788, while females earned $56,189, leading to a 16% gender pay gap among full-time workers. This illustrates that women earn 84 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Fort Lauderdale.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fort Lauderdale median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Income Inequality in Wayne County, MS was 17.32147 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Wayne County, MS reached a record high of 19.85285 in January of 2019 and a record low of 14.33559 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Wayne County, MS - last updated from the United States Federal Reserve on September of 2025.
In 2023, the Gini index for households of Asian origin in the United States stood at ****. The Census Bureau defines the Gini index as “a statistical measure of income inequality ranging from zero to ***. A measure of *** indicates perfect inequality, i.e., *** household having all the income and rest having none. A measure of zero indicates perfect equality, i.e., all households having an equal share of income.”