Extensive land use and geographic data at the tax lot level in GIS format (ESRI Shapefile). Contains more than seventy fields derived from data maintained by city agencies, merged with tax lot features from the Department of Finance’s Digital Tax Map, clipped to the shoreline. All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
The landscape of the conterminous United States has changed dramatically over the last 200 years, with agricultural land use, urban expansion, forestry, and other anthropogenic activities altering land cover across vast swaths of the country. While land use and land cover (LULC) models have been developed to model potential future LULC change, few efforts have focused on recreating historical landscapes. Researchers at the US Geological Survey have used a wide range of historical data sources and a spatially explicit modeling framework to model spatially explicit historical LULC change in the conterminous United States from 1992 back to 1938. Annual LULC maps were produced at 250-m resolution, with 14 LULC classes. Assessment of model results showed good agreement with trends and spatial patterns in historical data sources such as the Census of Agriculture and historical housing density data, although comparison with historical data is complicated by definitional and methodological differences. The completion of this dataset allows researchers to assess historical LULC impacts on a range of ecological processes.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data publication contains multiple maps of Puerto Rico scanned at 600 dots per inch: full map scans, scans clipped to mapped areas only, and georeferenced scans of 1:10,000-scale land-use maps from 1950-1951 that were produced by the Rural Land Classification Program of Puerto Rico, a project led by Dr. Clarence F. Jones of Northwestern University. These historical maps classified land use and land cover into 20 different classes, including 13 different types of crops, two classes of forests, four classes of grasslands and other areas, which is a general class for non-rural areas. This package includes maps from 76 out of the 78 municipalities of Puerto Rico, covering 422 quadrangles of a 443-quadrangle grid for mainland Puerto Rico. It excludes the island municipalities of Vieques and Culebra, Mona Island and minor outlying islands.The Rural Land Classification Program of Puerto Rico produced 430 1:10,000-scale maps. That program also produced one island-wide land-use map with more generalized delineations of land use. Previously, Kennaway and Helmer (2007) scanned and georeferenced the island-wide map, and they converted it to vector and raster formats with embedded georeferencing and classification. This data publication contains the higher-resolution maps, which will provide more precise historical context for forests. It will better inform management efforts for the sustainable use of forest lands and to build resilience and resistance to various future disturbances for these and other tropical forest landscapes.
The maps were scanned and georeferenced to help with the planning and application process for the USDA Forest Service (USDA) Forest Legacy Program, a competition-based program administered by the USDA Forest Service in partnership with State agencies to encourage the protection of privately owned forest lands through conservation easements or land purchases. Geospatial products and maps will also be used by personnel at the Department of Natural and Environmental Resources and partners in Non-Governmental Organizations working with the Forest Stewardship Program. This latter program provides technical assistance and forest management plans to private landowners for the conservation and effective management of private forests across the US. The information will provide local historical context on forest change patterns that will enhance the recommendations of forest management practices for private forest landowners. These data will also be useful for urban forest professionals to understand the land legacies as a basis for planning green infrastructure interventions.
Data depict the rural areas of Puerto Rico around 1951 and how they were classified by geographers then. Having it georeferenced allows managers, teachers, students, the public and scientists to compare how these classifications have changed throughout the years. It will allow more precise identification and mapping of the past land use of present forests, forest stand age, and the past juxtaposition of different land uses relative to each other. These factors can affect forest species composition, biodiversity and ecosystem services. Forest stand age, past land-use type and past disturbance type, forest example, help gauge current forest structure, carbon storage, or rates of carbon accumulation. Another example of how the maps are important is for understanding how watersheds have changed through time, which helps assess how forest ecosystem services related to hydrology evolve. These maps will also help gauge how the forests of Puerto Rico are responding to recent disturbances, and how past disturbances over a range of scales relate to these responses.For more information on the Rural Land Classification Program of Puerto Rico, generated maps, and the island-wide land-use map, please see Jones (1952), Jones and Berrios (1956), as well as Kennaway and Helmer (2007).
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
Historic land uses on lots that were vacant, privately owned, and zoned for manufacturing in 2009. Information came from a review of several years of historical Sanborn maps over the past 100 years. When the SPEED 1.0 mapping application was created in 2009, OER had its vendor examine historic land use maps on vacant, privately-owned, industrially-zoned tax lots. Up to seven years of maps for each lot were examined, and information was recorded that indicated industrial uses or potential environmental contamination such as historic fill. Data for an additional 139 lots requested by community-based organizations was added in 2014. Each record represents the information from a map from a particular year on a particular tax lot at that time. Limitations of funding determined the number of lots included and entailed that not all years were examined for each lot.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The longest of the three estimates spans 1770-2010. The dataset presented here takes into account land-cover change due to four major land-use/management activities: (1) cropland expansion and abandonment, (2) pastureland expansion and abandonment, (3) urbanization, and (4) secondary forest regrowth due to wood harvest. Due to uncertainties associated with estimating historical agricultural (crops and pastures) land use, the study uses three widely accepted global reconstruction of cropland and pastureland in combination with common wood harvest and urban land data set to provide three distinct estimates of historical land-cover change and underlying land-use conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and extent to which different ecosystem have undergone changes. The three estimates use a consistent methodology, and start with a common land-cover map during pre-industrial conditions (year 1765), taking different courses as determined by the land-use/management datasets (cropland, pastureland, urbanization and wood harvest) to attain forest area distributions close to satellite estimates of forests for contemporary period. The satellite based estimates of forest area are based on MODIS sensor. All data uses the WGS84 spatial coordinate system for mapping.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
This 1 km resolution 41-class land cover classification map of South America was produced from 1-15 km National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data over the time period 1987 through 1991.
These data were originally acquired from Woods Hole Research Center ("http://terra.whrc.org/science/tropfor/setLBA.htm") and were modified as described in documentation provided when data are ordered from EOS-WEBSTER.
Digital images of these data are also available from the EOS-WEBSTER Image Gallary. Please see the Data Tab at the following URL: "http://eos-earthdata.sr.unh.edu/". These images can be downloaded as JPEGs and used directly in a document or printed.
Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.This layer displays land cover for the years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into web mercator, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief.MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover.51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate is periodically saturated with or covered with water.95. Emergent Herbaceous Wetlands - Areas where perennial herbaceous vegetation accounts for greater than 80% of vegetative cover and the soil or substrate is
This map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.
Background and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region. Acknowledgements Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.
This statewide land cover theme is a digital raster map of natural vegetation communities and disturbances (e.g. wildland fire) and human land use activities for Montana. The basemap is adapted from the LANDFIRE 2016 Remap (LF 2.0.0) Existing Vegetation Type (EVT) classification, which used 30 m resolution Landsat multi-spectral imagery that represented circa 2016 ground conditions. The EVT product contained the distribution of ecological systems classification units developed by NatureServe, and also included semi-natural (ruderal) vegetation types within the U.S. National Vegetation Classification (NVC). The EVT mapping was developed using decision tree models, field data, Landsat imagery, elevation, and biophysical gradient data. Detailed metadata for EVT can be found at https://www.landfire.gov/vegetation/evt. Initial Data Sources and Processing Steps 2020 – 2021: The original LANDFIRE EVT raster was downloaded, clipped to the boundary of Montana, and projected from NAD 1983 Albers (meters) to NAD 1983-2011 State Plane Montana FIPS 2500 (meters). It was initially modified using state-specific datasets such as the 2017 MSDI Transportation Framework, the 2020 Montana Department of Revenue Final Land Unit (FLU) classification of private agricultural land, the USFS VMAP products and the Montana Ecological Groups; as well as national datasets such as SSURGO soils, the USGS Land Change Monitoring, Assessment, and Projection (LCMAP) and Monitoring Trends in Burn Severity (MTBS) rasters. Additional updates include reassignment of certain EVT classes and cross referencing some EVT classes to a modified version of ecological systems for Montana (Montana Field Guide for Ecological Systems, https://fieldguide.mt.gov/displayES_LCLU.aspx). EVT classes were further reassigned where there was disagreement with the expected species range described in the Montana Field Guide. For a detailed description of these initial steps see data processing steps Section 1. Ecological Group Data Processing Steps 2021-2023: EVT classes were reassigned based on visual inspection of each ecological group and informed by ancillary datasets, such as ecological group attributes, NAIP imagery, SSURGO soils, and elevation and its derivatives. The methods implemented in revising the original LANDFIRE 2016 REMAP product represent a successful proof of concept for performing locationally specific updates rather than only systematic statewide revisions. Project funding and time constraints precluded addressing all errors of omission and commission in the original LANDFIRE 2016 Remap product that could have been revised using methods developed for updating Landfire EVT for Montana Land Cover. For a detailed description see data processing steps Section 2.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LUCAS LUC future dataset consists of annual land use and land cover maps from 2016 to 2100 for North America. It is based on land cover data from the LANDMATE PFT dataset for the year 2015. The LANDMATE PFT consists of 16 plant functional types and non-vegetated classes that were converted from the ESA-CCI LC land cover data according to the method of Reinhart et al. (2022). For version 1.1 of the LUCAS LUC dataset, the improved LANDMATE PFT map version 1.1 was employed. The land use change information from the Land-Use Harmonization Data Set version 2 (LUH2 v2.1f, Hurtt et al. 2020) were imposed using the land use translator developed by Hoffmann et al. (2023). The projected land use change information was derived for different Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) combinations used in the framework of the 6th phase of Coupled Modelling Intercomparison Project (CMIP6). For each year, a map is provided that contains 16 fields. Each field holds the fraction the respective plant functional types and non-vegetated classes in the total grid cell (0-1). The LUCAS LUC dataset was constructed within the HICSS project LANDMATE and the WCRP flagship pilot study LUCAS to meet the requirements of downscaling experiments within CORDEX. Plant functional types and non-vegetative classes: 1 - Tropical broadleaf evergreen trees 2 - Tropical deciduous trees 3 - Temperate broadleaf evergreen trees 4 - Temperate deciduous trees 5 - Evergreen coniferous trees 6 - Deciduous coniferous trees 7 - Coniferous shrubs 8 - Deciduous shrubs 9 - C3 grass 10 - C4 grass 11 - Tundra 12 - Swamp 13 - Non-irrigated crops 14 - Irrigated crops 15 - Urban 16 - Bare
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Chesapeake Bay Land Use and Land Cover Database (LULC) facilitates characterization of the landscape and land change for and between discrete time periods. The database was developed by the University of Vermont’s Spatial Analysis Laboratory in cooperation with Chesapeake Conservancy (CC) and U.S. Geological Survey (USGS) as part of a 6-year Cooperative Agreement between Chesapeake Conservancy and the U.S. Environmental Protection Agency (EPA) and a separate Interagency Agreement between the USGS and EPA to provide geospatial support to the Chesapeake Bay Program Office. The database contains one-meter 13-class Land Cover (LC) and 54-class Land Use/Land Cover (LULC) for all counties within or adjacent to the Chesapeake Bay watershed for 2013/14 and 2017/18, depending on availability of National Agricultural Imagery Program (NAIP) imagery for each state. Additionally, 54 LULC classes are generalized into 18 LULC classes for ease of visualization and communication of LULC trends ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
[ Derived from parent entry - See data hierarchy tab ]
The LUCAS LUC future dataset consists of annual land use and land cover maps from 2016 to 2100 for North America. It is based on land cover data from the LANDMATE PFT dataset for the year 2015. The LANDMATE PFT consists of 16 plant functional types and non-vegetated classes that were converted from the ESA-CCI LC land cover data according to the method of Reinhart et al. (2022). For version 1.1 of the LUCAS LUC dataset, the improved LANDMATE PFT map version 1.1 was employed. The land use change information from the Land-Use Harmonization Data Set version 2 (LUH2 v2.1f, Hurtt et al. 2020) were imposed using the land use translator developed by Hoffmann et al. (2023). The projected land use change information was derived for different Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) combinations used in the framework of the 6th phase of Coupled Modelling Intercomparison Project (CMIP6). For each year, a map is provided that contains 16 fields. Each field holds the fraction the respective plant functional types and non-vegetated classes in the total grid cell (0-1). The LUCAS LUC dataset was constructed within the HICSS project LANDMATE and the WCRP flagship pilot study LUCAS to meet the requirements of downscaling experiments within CORDEX. Plant functional types and non-vegetative classes: 1 - Tropical broadleaf evergreen trees 2 - Tropical deciduous trees 3 - Temperate broadleaf evergreen trees 4 - Temperate deciduous trees 5 - Evergreen coniferous trees 6 - Deciduous coniferous trees 7 - Coniferous shrubs 8 - Deciduous shrubs 9 - C3 grass 10 - C4 grass 11 - Tundra 12 - Swamp 13 - Non-irrigated crops 14 - Irrigated crops 15 - Urban 16 - Bare
This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled change classes for each year. See additional information about change in the Entity_and_Attribute_Information section below. LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a 'best available' map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades. Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.
This dataset consists of raster geotiff outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration goals. We parameterized our models based on close interpretation of these four scenario narratives to best reflect stakeholder interests, adding a baseline Historical Business-As-Usual scenario (HBAU) for comparison. For these future map projections, the model was initialized in 2011 and run forward on an annual time step to 2101. Each filename has the associated scenario ID (scn418 = DUST, scn419 = DREAM, scn420 = HBAU, scn421 = BBAU, and scn426 = EEM), State Class identification as “sc”, model iteration (= it1 in all cases as only 1 Monte Carlo simulation was modeled), and timestep as “ts” information embedded in the file naming convention. For example, the filename scn418.sc.it1.ts2027.tif represents the DUST scenario (scn418), state class information (sc), iteration 1 (it1), for the 2027 model year (ts2027). The full methods and results of this research are described in detail in the parent manuscript "Integrated modeling of climate, land use, and water availability scenarios and their impacts on managed wetland habitat: A case study from California’s Central Valley" (2021).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The 2015 North American Land Cover 30-meter dataset was produced as part of the North American Land Change Monitoring System (NALCMS), a trilateral effort between Natural Resources Canada, the United States Geological Survey, and three Mexican organizations including the National Institute of Statistics and Geography (Instituto Nacional de Estadística y Geografía), National Commission for the Knowledge and Use of the Biodiversity (Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad), and the National Forestry Commission of Mexico (Comisión Nacional Forestal). The collaboration is facilitated by the Commission for Environmental Cooperation, an international organization created by the Canada, Mexico, and United States governments under the North American Agreement on Environmental Cooperation to promote environmental collaboration between the three countries.The general objective of NALCMS is to devise, through collective effort, a harmonized multi-scale land cover monitoring approach which ensures high accuracy and consistency in monitoring land cover changes at the North American scale and which meets each country’s specific requirements.This 30-meter dataset of North American Land Cover reflects land cover information for 2015 from Mexico and Canada and 2016 for the United States. Each country developed its own classification method to identify Land Cover classes and then provided an input layer to produce a continental Land Cover map across North America. Canada, Mexico, and the United States developed their own 30-meter land cover products; see specific sections on data generation below.The main inputs for image classification were 30-meter Landsat 4-8 Collection 1 Level 2 data in the Canada and United States Maps(including Alaska) and 5-meters RapidEye for Mexico land cover map. Image selection processes and reduction to specific spectral bands varied among the countries due to study-site-specific requirements. While Canada selected most images from the year 2015 with a few from 2014 and 2016, the United States employed mainly images from 2016 with few images from 2015 and 2017. Mexico used all available 5-meters RapidEye images from January to December 2015, orthorectified as individual 25 by 25 kilometers tiles and the resampled to 30-meters pixel size.In order to generate a seamless and consistent land cover map of North America, national maps were generated for Canada by the CCRS; for Mexico by CONABIO, INEGI, and CONAFOR; and for the United States by the USGS. Each country chose their own approaches, ancillary data, and land cover mapping methodologies to create national datasets. This North America dataset was produced by combining the national land cover datasets. The integration of the three national products merged four Land Cover map sections, Alaska, Conterminous United States and Mexico.In this second version of the North America Land Cover map, the Alaska section has been updated from the map released in February 2020 (version 1). The United States Geological Survey (USGS) provided an updated land cover map of Alaska in July 2020, which was consequently integrated in the continental map and replaced the first version. To learn more about the North American Land Change Monitoring System and to download the data, free of charge, visit: www.cec.org/north-american-land-change-monitoring-system/ For any question, please contact naatlas@cec.orgThe complete reference to cite when using this map is: Commission for Environmental Cooperation. "2015 Land Cover of North America at 30 Meters", North American Land Change Monitoring System, Ed. 2.0. 2020.
Extensive land use and geographic data at the tax lot level in GIS format (ESRI Shapefile). Contains more than seventy fields derived from data maintained by city agencies, merged with tax lot features from the Department of Finance’s Digital Tax Map, clipped to the shoreline. All previously released versions of this data are available at BYTES of the BIG APPLE- Archive