This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
This dataset (2017-2023) is a compilation of the Land Use/Land Cover datasets created by the 5 Water Management Districts in Florida based on imagery -- Northwest Florida Water Management District (NWFWMD) 2022.Bay (1/4/2022 – 3/24/2022), Calhoun (1/7/2022 – 1/18/2022),Escambia (11/13/2021 – 1/15/2021), Franklin (1/7/2022 – 1/18/2022), Gadsden (1/7/2022 – 1/16/2022), Gulf (1/7/2022 – 1/14/2022), Holmes (1/8/2022 – 1/18/2022), Jackson (1/7/2022 – 1/14/2022), Jefferson (1/7/2022 – 2/16/2022), Leon (February 2022), Liberty (1/7/2022 – 1/16/2022), Okaloosa (10/31/2021 – 2/13/2022), Santa Rosa (10/26/2021-1/17/2022), Wakulla (1/7/2022 – 1/14/2022), Walton (1/7/2022-1/14/2022), Washington (1/13/2022 – 1/19/2022).Suwannee River Water Management District (SRWMD) 2019-2023.(Alachua 20200102-20200106), (Baker 20200108-20200126), (Bradford 20181020-20190128), (Columbia 20181213-20190106), (Gilchrist 20181020-20190128), (Levy 20181020-20190128), (Suwannee 20181217-20190116), (Union 20181020-20190128).(Dixie 12/17/2021-01/29/2022), (Hamilton 12/17/2021-01/29/2022), (Jefferson 01/07/2022-02/16/2022), (Lafayette 12/17/2021-01/29/2022), (Madison 12/17/2021-01/29/2022), (Taylor 12/17/2021-01/29/2022.Southwest Florida Water Management District (SWFWMD) 2020. South Florida Water Management District (SFWMD) 2021-2023.St. John's River Water Management District (SJRWMD) 2020.Year Flight Season Counties:2020 (Dec. 2019 - Mar 2020) Alachua, Baker, Clay, Flagler, Lake, Marion, Osceola, Polk, Putnam.2021 (Dec. 2020 - Mar 2021) Brevard, Indian River, Nassau, Okeechobee, Orange, St. Johns, Seminole, Volusia. 2022 (Dec. 2021 - Mar 2022) Bradford, Union. Codes are derived from the Florida Land Use, Cover, and Forms Classification System (FLUCCS-DOT 1999) but may have been altered to accommodate region differences by each of the Water Management Districts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Download linkSizeType2019 NLCD2.28 GBapplication/zipThe U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011 and 2016. The 2016 release saw land cover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019.The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.National Land Cover Database (NLCD) 2019 Impervious ProductsNational Land Cover Database (NLCD) 2019 Land Cover Products
A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks)
For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub.
To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md
Forest Ownership (2016) was created for the Forests to Faucets 2.0 Project and modified for the Forest Stewardship Program. The Forest Ownership dataset was created for the Forests to Faucets 2.0 Project and has been modified for the Forest Stewardship Program. This dataset was derived from the 2016 National Land Cover Database (NLCD Value = 41,42,43, 90); Protected Areas Database (PAD-US v2.1); and the National Conservation Easement Database (NCED.)This map (Field FOROWN_FSP) depicts ownership classes aligned with the Forests Stewardship Program for planning purposes. Private Forest Ownership defined in this dataset includes forested lands that are privately owned, lands with legal conservation easements, private conservation lands (includes private conservancies, preserves, and sanctuaries), and Native American lands.PAD_NCED_PRI10OwnershipFOROWNFOROWN_FSP0Non ForestNon ForestNon Forest1NCED Permanent Easements Protected ForestPrivate Forest2Federal LandFederal ForestFederal Forest3USDA Forest ServiceForest Service ForestForest Service Forest4Native American LandProtected ForestPrivate Forest5Joint OwnershipProtected ForestProtected Forest6Local LandProtected ForestProtected Forest7Private Conservation LandProtected ForestPrivate Forest8State LandProtected ForestState Forest9UnknownProtected ForestProtected Forest10PrivatePrivate ForestPrivate ForestField NLCD_2016_LAND_C are the NLCD values found here: https://www.mrlc.gov/data/legends/national-land-cover-database-2016-nlcd2016-legendSourcesConservation Biology Institute, 2016. PAD-US (CBI Edition) Version 2.1 Shapefile (updated September 1, 2016) U.S. Endowment for Forestry and Communities 2016. National Conservation Easement Database October 5 2016 U.S. Geological Survey, 2019. NLCD 2016 Land Cover Conterminous United States. Sioux Falls, SD. (Value = 41,42,43, 90) Yang, L., et al. (2018). "A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies." ISPRS Journal of Photogrammetry and Remote Sensing 146: 108-123.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Cropland Data Layer (CDL), hosted on CropScape, provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. The data is created annually using moderate resolution satellite imagery and extensive agricultural ground truth. Users can select a geographic area of interest or import one, then access acreage statistics for a specific year or view the change from one year to another. The data can be exported or added to the CDL. The information is useful for issues related to agricultural sustainability, biodiversity, and land cover monitoring, especially due to extreme weather events. Resources in this dataset:Resource Title: CropScape and Cropland Data Layer - National Download. File Name: Web Page, url: https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php Downloads available as zipped files at https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php --
National CDL's -- by year, 2008-2020. Cropland Data Layer provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. National Cultivated Layer -- based on the most recent five years (2013-2020). National Frequency Layer -- the 2017 Crop Frequency Layer identifies crop specific planting frequency and are based on land cover information derived from the 2008 through 2020CDL's. There are currently four individual crop frequency data layers that represent four major crops: corn, cotton, soybeans, and wheat. National Confidence Layer -- the Confidence Layer spatially represents the predicted confidence that is associated with that output pixel, based upon the rule(s) that were used to classify it. Western/Eastern/Central U.S.
Visit https://nassgeodata.gmu.edu/CropScape/ for the interactive map including tutorials and basic instructions. These options include a "Demo Video", "Help", "Developer Guide", and "FAQ".
This series of three-period land use land cover (LULC) datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.
In the United States, the federal government manages approximately 28% of the land in the United States. Most federal lands are west of the Mississippi River, where almost half of the land by area is managed by the federal government. Federal lands include 193 million acres managed by the US Forest Service in 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service, and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources. The agencies included in this layer are:Bureau of Land ManagementDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States federal lands managed by six federal agenciesGeographic Extent: 50 United States and the District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Data Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DOD, USFS, USFWS, NPS, PADUS 3.0Publication Date: Various - Esri compiled and published this layer in May 2025. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
"Due to the size of this dataset, both Shapefile and Spreadsheet download options will not work as expected. The File Geodatabase is an alternative option for this data download"This is SCAG's 2019 Annual Land Use (ALU v. 2019.1) at the parcel-level, updated as of February 2021. This dataset has been modified to include additional attributes in order to feed SCAG's Housing Element Parcel Tool (HELPR), version 2.0. The dataset will be further reviewed and updated as additional information is released. Please refer to the tables below for data dictionary and SCAG’s land use classification.Field NameData TypeField DescriptionPID19Text2019 SCAG’s parcel unique IDAPN19Text2019 Assessor’s parcel numberCOUNTYTextCounty name (based on 2016 county boundary)COUNTY_IDDoubleCounty FIPS code (based on 2016 county boundary)CITYTextCity name (based on 2016 city boundary)CITY_IDDoubleCity FIPS code (based on 2016 city boundary)MULTIPARTShort IntegerMultipart feature (the number of multiple polygons; '1' = singlepart feature)STACKLong IntegerDuplicate geometry (the number of duplicate polygons; '0' = no duplicate polygons)ACRESDoubleParcel area (in acreage)GEOID20Text2020 Census Block Group GEOIDSLOPEShort IntegerSlope information1APN_DUPLong IntegerDuplicate APN (the number of multiple tax roll property records; '0' = no duplicate APN)IL_RATIODoubleRatio of improvement assessed value to land assessed valueLU19Text2019 existing land useLU19_SRCTextSource of 2019 existing land use2SCAGUID16Text2016 SCAG’s parcel unique IDAPNText2016 Assessor’s parcel numberCITY_GP_COText2016 Jurisdiction’s general plan land use designationSCAG_GP_COText2016 SCAG general plan land use codeSP_INDEXShort IntegerSpecific plan index ('0' = outside specific plan area; '1' = inside specific plan area)CITY_SP_COText2016 Jurisdiction’s specific plan land use designationSCAG_SP_COText2016 SCAG specific plan land use codeCITY_ZN_COText2016 Jurisdiction’s zoning codeSCAG_ZN_COText2016 SCAG zoning codeLU16Text2016 existing land useYEARLong IntegerDataset yearPUB_OWNShort IntegerPublic-owned land index ('1' = owned by public agency)PUB_NAMETextName of public agencyPUB_TYPETextType of public agency3BF_SQFTDoubleBuilding footprint area (in square feet)4BSF_NAMETextName of brownfield/superfund site5BSF_TYPETextType of brownfield/superfund site5FIREShort IntegerParcel intersects CalFire Very High Hazard Local Responsibility Areas or State Responsibility Areas (November 2020 version) (CalFIRE)SEARISE36Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)1 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)SEARISE72Short IntegerParcel intersects with USGS Coastal Storm Modeling System (CoSMos)2 Meter Sea Level Rise inundation areas for Southern California (v3.0, Phase 2; 2018)FLOODShort IntegerParcel intersects with a FEMA 100 Year Flood Plain data from the Digital Flood Insurance Rate Map (DFIRM), obtained from Federal Emergency Management Agency (FEMA) in August 10, 2017EQUAKEShort IntegerParcel intersects with an Alquist-Priolo Earthquake Fault Zone (California Geological Survey; 2018)LIQUAFAShort IntegerParcel intersects with a Liquefaction Susceptibility Zone (California Geological Survey; 2016)LANDSLIDEShort IntegerParcel intersects with a Landslide Hazard Zone (California Geological Survey; 2016)CPADShort IntegerParcel intersects with a protected area from the California Protected Areas Database(CPAD) – www.calands.org (accessed April 2021)RIPARIANShort IntegerParcel centroid falls within Active River Areas(2010)or parcel intersects with a Wetland Area in the National Wetland Inventory(Version 2)WILDLIFEShort IntegerParcel intersects with wildlife habitat (US Fish & Wildlife ServiceCritical Habitat, Southern California Missing Linkages, Natural Lands & Habitat Corridors from Connect SoCal, CEHC Essential Connectivity Areas,Critical Coastal Habitats)CNDDBShort IntegerThe California Natural Diversity Database (CNDDB)includes the status and locations of rare plants and animals in California. Parcels that overlap locations of rare plants and animals in California from the California Natural Diversity Database (CNDDB)have a greater likelihood of encountering special status plants and animals on the property, potentially leading to further legal requirements to allow development (California Department of Fish and Wildlife). Data accessed in October 2020.HCPRAShort IntegerParcel intersects Natural Community & Habitat Conservation Plans Reserve Designs from the Western Riverside MHSCP, Coachella Valley MHSCP, and the Orange County Central Coastal NCCP/HCP, as accessed in October 2020WETLANDShort IntegerParcel intersects a wetland or deepwater habitat as defined by the US Fish & Wildlife Service National Wetlands Inventory, Version 2.UAZShort IntegerParcel centroid lies within a Caltrans Adjusted Urbanized AreasUNBUILT_SFDoubleDifference between parcel area and building footprint area expressed in square feet.6GRCRY_1MIShort IntegerThe number of grocery stores within a 1-mile drive7HEALTH_1MIShort IntegerThe number of healthcare facilities within a 1-mile drive7OPENSP_1MIShort IntegerQuantity of open space (roughly corresponding to city blocks’ worth) within a 1-mile drive7TCAC_2021TextThe opportunity level based on the 2021 CA HCD/TCAC opportunity scores.HQTA45Short IntegerField takes a value of 1 if parcel centroid lies within a 2045 High-Quality Transit Area (HQTA)JOB_CTRShort IntegerField takes a value of 1 if parcel centroid lies within a job centerNMAShort IntegerField takes a value of 1 if parcel centroid lies within a neighborhood mobility area.ABS_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within an absolute constraint area. See the Sustainable Communities Strategy Technical Reportfor details.VAR_CONSTRShort IntegerField takes a value of 1 if parcel centroid lies within a variable constraint area. See the Sustainable Communities Strategy Technical Reportfor details.EJAShort IntegerField takes a value of 1 if parcel centroid lies within an Environmental Justice Area. See the Environmental Justice Technical Reportfor details.SB535Short IntegerField takes a value of 1 if parcel centroid lies within an SB535 Disadvantaged Community area. See the Environmental Justice Technical Reportfor details.COCShort IntegerField takes a value of 1 if parcel centroid lies within a Community of Concern See the Environmental Justice Technical Reportfor details.STATEShort IntegerThis field is a rudimentary estimate of which parcels have adequate physical space to accommodate a typical detached Accessory Dwelling Unit (ADU)8.SBShort IntegerIndex of ADU eligibility according to the setback reduction policy scenario (from 4 to 2 feet) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SMShort IntegerIndex of ADU eligibility according to the small ADU policy scenario (from 800 to 600 square feet ADU) (1 = ADU eligible parcel, Null = Not ADU eligible parcel)PKShort IntegerIndex of ADU eligibility according to parking space exemption (200 square feet) policy scenario (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SMShort IntegerIndex of ADU eligibility according to both the setback reduction and small ADU policy scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_PKShort IntegerIndex of ADU eligibility according to both the setback reduction and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SM_PKShort IntegerIndex of ADU eligibility according to both the small ADU policy and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)SB_SM_PKShort IntegerIndex of ADU eligibility according to the setback reduction, small ADU, and parking space exemption scenarios (1 = ADU eligible parcel, Null = Not ADU eligible parcel)1. Slope: '0' - 0~4 percent; '5' - 5~9 percent; '10' - 10~14 percent; '15' = 15~19 percent; '20' - 20~24 percent; '25' = 25 percent or greater.2. Source of 2019 existing land use: SCAG_REF- SCAG's regional geospatial datasets;ASSESSOR- Assessor's 2019 tax roll records; CPAD- California Protected Areas Database (version 2020a; accessed in September 2020); CSCD- California School Campus Database (version 2018; accessed in September 2020); FMMP- Farmland Mapping and Monitoring Program's Important Farmland GIS data (accessed in September 2020); MIRTA- U.S. Department of Defense's Military Installations, Ranges, and Training Areas GIS data (accessed in September 2020)3. Type of public agency includes federal, state, county, city, special district, school district, college/university, military.4. Based on 2019 building footprint data obtained from BuildingFootprintUSA (except that 2014 building footprint data was used for Imperial County). Please note that 2019 building footprint data does not cover the entire SCAG region (overlapped with 83% of parcels in the SCAG Region).5. Includes brownfield/superfund site whose address information are matched by SCAG rooftop address locator. Brownfield data was obtained from EPA's Assessment, Cleanup and Redevelopment Exchange System (ACRES) database, Cleanups in my community (CIMC), DTSC brownfield Memorandum of Agreement (MOA). Superfund site data was obtained from EPA's Superfund Enterprise Management System (SEMS) database.6. Parcels with a zero value for building footprint area are marked as NULL to indicate this field is not reliable.7. These values are intended as a rudimentary indicator of accessibility developed by SCAG using 2016 InfoUSA business establishment data and 2017 California Protected Areas data. See documentation for details.8. A detailed study conducted by Cal Poly Pomona (CPP) and available hereconducted an extensive review of state and local requirements and development trends for ADUs in the SCAG region and developed a baseline set of assumptions for estimating how many of a jurisdiction’s parcels
This web application contains information from the Bureau of Indian Affairs, The U.S.G.S., The U.S. Census and BLM. The following information is in relation to the Surface Management Agency layer created by BLM: The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. The SMA Withdrawals feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. For more information on theProtected Areas Database (PAD-US) 3.0 Datalayer visit: https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-data-download or U.S. Geological Survey (USGS) Gap Analysis Project (GAP), 2022, Protected Areas Database of the United States (PAD-US) 3.0: U.S. Geological Survey data release, https://doi.org/10.5066/P9Q9LQ4B.
This map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Geospatial Services Land management within the US Forest Service and on the 900,000+ acre Monongahela National Forest (NF) is driven by a wide mix of resource and societal demands that prove a challenge in fulfilling the Forest Service’s mission of “Caring for the Land and Serving the People.” Programmatically, the 2006 Land and Resource Management Plan guide natural resource management activities on lands administered by the Monongahela National Forest. The Forest Plan describes management direction and practices, resource protection methods and monitoring, desired resource conditions, and the availability and suitability of lands for resource management. Technology enables staff to address these land management issues and Forest Plan direction by using a science-based approach to facilitate effective decisions. Monongahela NF geospatial services, using enabling-technologies, incorporate key tools such as Environmental Systems Research Institute’s ArcGIS desktop suite and Trimble’s global positioning system (GPS) units to meet program and Forest needs. Geospatial Datasets The Forest has a broad set of geospatial datasets that capture geographic features across the eastern West Virginia landscape. Many of these datasets are available to the public through our download site. Selected geospatial data that encompass the Monongahela National Forest are available for download from this page. A link to the FGDC-compliant metadata is provided for each dataset. All data are in zipped format (or available from the specified source), in one of two spatial data formats, and in the following coordinate system: Coordinate System: Universal Transverse Mercator Zone: 17 Units: Meters Datum: NAD 1983 Spheroid: GRS 1980 Map files – All map files are in pdf format. These maps illustrate the correlated geospatial data. All maps are under 1 MB unless otherwise noted. Metadata file – This FGDC-compliant metadata file contains information pertaining to the specific geospatial dataset. Shapefile – This downloadable zipped file is in ESRI’s shapefile format. KML file – This downloadable zipped file is in Google Earth’s KML format. Resources in this dataset:Resource Title: Monongahela National Forest Geospatial Data. File Name: Web Page, url: https://www.fs.usda.gov/detail/mnf/landmanagement/gis/?cid=stelprdb5108081 Selected geospatial data that encompass the Monongahela National Forest are available for download from this page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As part of THEIA (the French Data and Services center for continental surfaces) CIRAD's TETIS research unit is developing an automated mapping method based on the Moringa chain that minimizes interactions with users by automating most image analysis and processing. The methodology uses jointly a Very High Spatial Resolution image (Spot6/7 or Pleiades) and one or more time series of High Spatial Resolution optical images such as Sentinel-2, Landsat-8 and Sentinel-1 for a classification combining segmentation and object classification (use of the Random Forest algorithm) driven by a learning database constituted from in situ collection and photo-interpretation. The land use maps, in ESRI shapefile format, are produced as part of the GABIR project (Gestion Agricole des Biomasses à l'échelle de l'Ile de la Réunion) and are all distributed on CIRAD's spatial data catalogue in Réunion: http://aware.cirad.fr/ This Dataverse entry concerns the maps produced, for the year 2019, using a mosaic of Spot6/7 images to calculate segmentation (extraction of homogeneous objects from the image). We use a field database with a nested nomenclature with 3 levels of accuracy allowing us to produce a classification by level. The most detailed level distinguishing crop types has an overall accuracy of 88% and a Kappa index of 0.86. Level 2, distinguishing crop groups, has an overall accuracy of 92% and a Kappa index of 0.93. Level 1, distinguishing major land use groups, has an overall accuracy of 97% and a Kappa index of 0.95. A detailed sheet presenting the validation method and results is available for download. Dans le cadre du Centre d’Expertise Scientifique Occupation des Sols de THEIA, l’UMR TETIS du CIRAD développe une méthode de cartographie automatisée fondée sur la chaine Moringa qui minimise les interactions avec les utilisateurs par l’automatisation de la plupart des processus d’analyse et de traitement des images. La méthodologie utilise conjointement une image à Très Haute Résolution Spatiale (Spot6/7 ou Pléiades) et une ou plusieurs séries temporelles d’images optiques à Haute Résolution Spatiale type Sentinel-2, Landsat-8 et Sentinel-1 pour une classification combinant segmentation et classification objet (utilisation de l’algorithme Random Forest) entrainée par une base de données d’apprentissage constituée à partir de collecte in situ et de photo-interprétation. Les cartes d'occupation du sol, diffusées au format vecteur Esri Shape, sont réalisées dans le cadre du projet GABIR (Gestion Agricole des Biomasses à l’échelle de l'Ile de la Réunion) et sont toutes diffusées sur le catalogue de données spatiales du Cirad à la Réunion : http://aware.cirad.fr/ Cette fiche du Dataverse concerne les cartes produites, pour l'année 2019, en utilisant une mosaïque d'images Spot6/7 pour calculer la segmentation (extraction d'objets homogènes à partir de l'image). Nous utilisons une base de données terrain ayant une nomenclature emboitée avec 3 niveaux de précision nous permettant de produire une classification par niveau. Le niveau le plus détaillé distinguant les types de cultures présente une précision globale de 88% et un indice de Kappa est de 0,86. Le niveau 2, distinguant les groupes de cultures présente une précision globale de 92% et un indice de Kappa est de 0,93. Le niveau 1, distinguant les grands groupes d'occupation du sol présente une précision globale de 97% et un indice de Kappa est de 0,95. Une fiche détaillée présentant la méthode et les résultats de validation est téléchargeable
As Esri’s commercial partner for parcel data, Regrid invites you to enjoy this free tile layer of parcel boundaries covering 100% of the United States. Complete parcel attributes are also available from an integrated Data Store."I think it’s fantastic that this layer exists. It's really helpful for my staff to see parcel boundaries in a quick and accessible layer."- Kate Berg, Geographic Information Systems (GIS) Manager | Department of Environment, Great Lakes, and EnergyVisit the Regrid Data Store for the ArcGIS User CommunityHassle-Free Parcel Data for Esri UsersWhen you click a parcel in the tile layer, you will see its address, size, and parcel ID number, along with a convenient link to purchase additional parcel attributes in The Regrid Data Store for the ArcGIS User Community. Once in the Data Store, you can purchase and download parcel files with attributes by the county and state for use in ArcGIS, as well as our add-on datasets like standardized zoning, matched building footprints, and matched secondary addresses.See regrid.com/esri for all of Regrid’s parcel products for the Esri ecosystem, including Feature Service delivery for ongoing parcel updates at scale.Key Features of Regrid's Parcel DataSourced & Standardized: Data combines authoritative public sources & third-party enrichments, aggregated, standardized, and matched by the Regrid team.158+ Million Parcel Records: Covering all 3,200+ US counties and territories.143+ Standardized Data Fields: Including geometry, ownership, buildings, secondary addresses, land use, and zoning.Universal Parcel ID & Placekey Location Identifier: Ensuring precise identification and integration.Detailed Attributes: Tax assessments, building counts, square footage, stacked parcels (condos), right-of-way, vacancy indicators and USPS deliverability. Comprehensive Coverage: 100% land parcel coverage across the US.Parcel Data Resources & DocumentationRegrid Data Dictionary / Parcel Data SchemaRegrid Coverage ReportParcel Data FAQsThank you to all the GIS professionals, state, county and federal officials, assessors, recorders, and public officials across the country who maintain the nation's parcel data and infrastructure.
NOTE: This file includes data for all 5 boroughs and has a size of 4.60 GB. Individual borough files are available for download from the metadata attachments section. Citywide Geographic Information System (GIS) land cover layer that displays land cover classification, plus pervious and impervious area and percentage at the parcel level, separated into 5 geodatabases, one per borough. DEP hosted a webinar on this study on June 23, 2020. A recording of the webinar, plus a PDF of the webinar presentation, accompany this dataset and are available for download. Please direct questions and comments to DEP at imperviousmap@dep.nyc.gov. This citywide parcel-level impervious area GIS layer was developed by the City of New York to support stormwater-related planning, and is provided solely for informational purposes. The accuracy of the data should be independently verified for any other purpose. The City disclaims any liability for errors and makes no warranties express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose as to the quality, content, accuracy or completeness of the information, text graphics, links and other items contained in this GIS layer.
The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. The SMA Withdrawals feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:
The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a high resolution (1-m) land cover map for Philadelphia, Pennsylvania in the United States of America during the summer of 2017. This dataset was created to differentiate two types of green space in Philadelphia: tree and grass cover. The dataset includes four numerically coded land cover classes.
Input data:
This classification is derived from National Agriculture Imagery Program (NAIP) 1-m aerial imagery captured in the State of Pennsylvania during June of 2017. To improve classification accuracy, NAIP data was stacked with Sentinel-2 level 1C 10-m and 20-m data using the .addBands() function in Google Earth Engine. For the Sentinel-2 data, a median composite was calculated from cloud-masked images collected between April and October of 2017. Sentinel-2 input bands included blue, green, red, red edge 1, red edge 2, red edge 3, near infrared, and shortwave infrared 1. An additional normalized difference vegetation index (NDVI) was calculated from the NAIP and Sentinel-2 bands using the formula:
NDVI = (Near infrared - Red) / (Near infrared + Red)
Classification methods:
We classified the input data using a Random Forest classifier with 200 trees. Data was classified into four coded land cover classes:
1 - Tree
2 - Grass
3 - Human-built structures
4 - Open water
8,961 land cover reference points were collected with 70% used to train and 30% to test the classifier. Results were smoothed using a 3x3 square kernel based on the mode of a pixel’s neighbors.
Accuracy:
Measures of accuracy including overall accuracy and per class user’s (UA) and producer’s accuracy (PA) of the random forest classifier were calculated.
Overall accuracy: 93%
Tree: UA = 89.73% PA = 93.90%
Grass: UA = 93.41% PA = 88.21%
Human-built structures: UA = 98.28% PA = 97.47%
Open water: UA = 93.56% PA = 98.95%
Code link:
The Google Earth Engine code used in this analysis is publicly available.
https://code.earthengine.google.com/32d3a77e70955a6279ec22233778bd8f
Data for download:
Two files are available for download.
Contains a shapefile of the 8,961 reference points used to train and test the classifier.
2. Philadelphia_Landcover_2017.zip
Contains a GEOTIFF of the classified image over Philadelphia, Pennsylvania for the summer of 2017.