Provides regional identifiers for county based regions of various types. These can be combined with other datasets for visualization, mapping, analyses, and aggregation. These regions include:Metropolitan Statistical Areas (Current): MSAs as defined by US OMB in 2023Metropolitan Statistical Areas (2010s): MSAs as defined by US OMB in 2013Metropolitan Statistical Areas (2000s): MSAs as defined by US OMB in 2003Region: Three broad regions in North Carolina (Eastern, Western, Central)Council of GovernmentsProsperity Zones: NC Department of Commerce Prosperity ZonesNCDOT Divisions: NC Dept. of Transportation DivisionsNCDOT Districts (within Divisions)Metro Regions: Identifies Triangle, Triad, Charlotte, All Other Metros, & Non-MetropolitanUrban/Rural defined by:NC Rural Center (Urban, Regional/Suburban, Rural) - 2020 Census designations2010 Census (Urban = Counties with 50% or more population living in urban areas in 2010)2010 Census Urbanized (Urban = Counties with 50% or more of the population living in urbanized areas in 2010 (50,000+ sized urban area))Municipal Population - State Demographer (Urban = counties with 50% or more of the population living in a municipality as of July 1, 2019)Isserman Urban-Rural Density Typology
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset represents States and equivalent entities, which are the primary governmental divisions of the United States. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Northeastern United States State Boundary data are intended for geographic display of state boundaries at statewide and regional levels. Use it to map and label states on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Santa Barbara Channel map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://res1walrusd-o-twrd-o-tusgsd-o-tgov.vcapture.xyz/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://res1doid-o-torg.vcapture.xyz/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Santa Barbara Channel map area data layers. Data layers are symbolized as shown on the associated map sheets.
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to http://nationalmap.gov/gnis.html.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset consists of general soil association units. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) dataset published in 1994. It consists of a broad based inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped of 1:250,000 in the continental U.S., Hawaii, Puerto, and the Virgin Islands and 1:1,000,000 in Alaska. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined.
Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the entire map unit.
This dataset consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1- by 2-degree topographic quadrangle units. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
These data provide information about soil features on or near the surface of the Earth. Data were collected as part of the National Cooperative Soil Survey. These data are intended for geographic display and analysis at the state, regional, and national level. The data should be displayed and analyzed at scales appropriate for 1:250,000-scale data.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: STATSGO2-State For complete information, please visit https://data.gov.
USGS Structures from The National Map (TNM) consists of data to include the name, function, location, and other core information and characteristics of selected manmade facilities across all US states and territories. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations. Structures currently included are: School, School:Elementary, School:Middle, School:High, College/University, Technical/Trade School, Ambulance Service, Fire Station/EMS Station, Law Enforcement, Prison/Correctional Facility, Post Office, Hospital/Medical Center, Cabin, Campground, Cemetery, Historic Site/Point of Interest, Picnic Area, Trailhead, Vistor/Information Center, US Capitol, State Capitol, US Supreme Court, State Supreme Court, Court House, Headquarters, Ranger Station, White House, and City/Town Hall. Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. Included is a feature class of preliminary building polygons provided by FEMA, USA Structures. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain structures data in either Esri File Geodatabase or Shapefile formats. For additional information on the structures data model, go to https://www.usgs.gov/ngp-standards-and-specifications/national-map-structures-content.
Abstract: This map layer portrays the State boundaries of the United States, Puerto Rico, and the U.S. Virgin Islands. The map layer was created by extracting county polygon features from the CENSUS 2006 TIGER/Line files produced by the U.S. Census Bureau. These files were then merged into a single file and county boundaries within States were removed.
Purpose: These data are intended for geographic display and analysis at thenational level, and for large regional areas. The data should bedisplayed and analyzed at scales appropriate for 1:1,000,000-scale data. No responsibility is assumed by The National Atlas of the United States in the use of these data.
This layer is a component of ENOW_Counties.
This map service presents spatial information about the Economics: National Ocean Watch (ENOW) data in the Web Mercator projection. The ENOW data provides time-series data on the ocean and Great Lakes economy, which includes six economic sectors dependent on the oceans and Great Lakes, and measures four economic indicators: Establishments, Employment, Wages, and Gross Domestic Product (GDP). The annual time-series data are available for about 400 coastal counties, 30 coastal states, 8 regions, and the nation. The service was developed by the National Oceanic and Atmospheric Administration (NOAA), but may contain data and information from a variety of data sources, including non-NOAA data. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© NOAA Office for Coastal Management
https://www.icpsr.umich.edu/web/ICPSR/studies/2913/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2913/terms
The 1998 Dress Rehearsal was conducted as a prelude to the United States Census of Population and Housing, 2000, in the following locations: (1) Columbia, South Carolina, and surrounding areas, including the town of Irmo and the counties of Chester, Chesterfield, Darlington, Fairfield, Kershaw, Lancaster, Lee, Marlboro, Newberry, Richland, and Union, (2) Sacramento, California, and (3) Menominee County, Wisconsin, including the Menominee American Indian Reservation. This collection contains map files showing various levels of geography (in the form of Census Tract Outline Maps, Voting District/State Legislative District Outline Maps, and County Block Maps), TIGER/Line digital files, and Corner Point files for the Census 2000 Dress Rehearsal sites. The Corner Point data files contain the bounding latitude and longitude coordinates for each individual map sheet of the 1998 Dress Rehearsal Public Law (P.L.) 94-171 map products. These files include a sheet identifier, minimum and maximum longitude, minimum and maximum latitude, and the map scale (integer value) for each map sheet. The latitude and longitude coordinates are in decimal degrees and expressed as integer values with six implied decimal places. There is a separate Corner Point File for each of the three map types: County Block Map, Census Tract Outline Map, and Voting District/State Legislative District Outline Map. Each of the three map file types is provided in two formats: Portable Document Format (PDF), for viewing, and Hewlett-Packard Graphics Language (HP-GL) format, for plotting. The County Block Maps show the greatest detail and the most complete set of geographic information of all the maps. These large-scale maps depict the smallest geographic entities for which the Census Bureau presents data -- the census blocks -- by displaying the features that delineate them and the numbers that identify them. These maps show the boundaries, names, and codes for American Indian/Alaska Native areas, county subdivisions, places, census tracts, and, for this series, the geographic entities that the states delineated in Phase 2, Voting District Project, of the Redistricting Data Program. The HP-GL version of the County Block Maps is broken down into index maps and map sheets. The map sheets cover a small area, and the index maps are composed of multiple map sheets, showing the entire area. The intent of the County Block Map series is to provide a map for each county on the smallest possible number of map sheets at the maximum practical scale, dependent on the area size of the county and the density of the block pattern. The latter affects the display of block numbers and feature identifiers. The Census Tract Outline Maps show the boundaries and numbers of census tracts, and name the features underlying the boundaries. These maps also show the boundaries and names of counties, county subdivisions, and places. They identify census tracts in relation to governmental unit boundaries. The mapping unit is the county. These large-format maps are produced to support the P.L. 94-171 program and all other 1998 Dress Rehearsal data tabulations. The Voting District/State Legislative District Outline Maps show the boundaries and codes for voting districts as delineated by the states in Phase 2, Voting District Project, of the Redistricting Data Program. The features underlying the voting district boundaries are shown, as well as the names of these features. Additionally, for states that submit the information, these maps show the boundaries and codes for state legislative districts and their underlying features. These maps also show the boundaries of and names of American Indian/Alaska Native areas, counties, county subdivisions, and places. The scale of the district maps is optimized to keep the number of map sheets for each area to a minimum, but the scale and number of map sheets will vary by the area size of the county and the voting districts and state legislative districts delineated by the states. The Census 2000 Dress Rehearsal TIGER/Line Files consist of line segments representing physical features and governmental and statistical boundaries. The files contain information distributed over a series of record types for the spatial objects of a county. These TIGER/Line Files are an extract of selected geographic and cartographic information from the Census TIGER (Topological
This coverage is of the state boundaries of the conterminous United States. It was derived from the Digital Line Graph (DLG) files representing the 1:2,000,000-scale map in the National Atlas of the United States. Boundaries United States
This dataset is used in the map tooltip documentation to explain different ways to enhance information in a map.This database represents locations of Hospitals for 50 states and Washington D.C. , Puerto Rico and US territories. The dataset only includes hospital facilities and does not include nursing homes. Data for all the states was acquired from respective states departments or their open source websites and then geocoded and converted into a spatial database. After geocoding the exact spatial location of each point was moved to rooftops wherever possible and points which have been physically verified have been labelled "Geocode", "Imagery", "Imagery with other" and "Unverified" depending on the methodology used to move the points. "Unverified" data points have still not been physically examined even though each of the points has been street geocoded as mentioned above. Missing records are denoted by 'Not Available' or NULL values. Not Available denotes information that was either missing in the source data or data that has not been populated current version. This dataset has been developed to represent Hospitals for inclusion in the HSIP datasets.
This map shows Congressional District boundaries for the United States. The map is set to middle Georgia.
Congressional districts are the 435 areas from which members are elected to the U.S. House of Representatives. After the apportionment of congressional seats among the states, which is based on decennial census population counts, each state with multiple seats is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The boundaries and numbers shown for the congressional districts are those specified in the state laws or court orders establishing the districts within each state.
Congressional districts for the 108th through 112th sessions were established by the states based on the result of the 2000 Census. Congressional districts for the 113th through 115th sessions were established by the states based on the result of the 2010 Census. Boundaries are effective until January of odd number years (for example, January 2015, January 2017, etc.), unless a state initiative or court ordered redistricting requires a change. All states established new congressional districts in 2011-2012, with the exception of the seven single member states (Alaska, Delaware, Montana, North Dakota, South Dakota, Vermont, and Wyoming).
For the states that have more than one representative, the Census Bureau requested a copy of the state laws or applicable court order(s) for each state from each secretary of state and each 2010 Redistricting Data Program state liaison requesting a copy of the state laws and/or applicable court order(s) for each state. Additionally, the states were asked to furnish their newly established congressional district boundaries and numbers by means of geographic equivalency files. States submitted equivalency files since most redistricting was based on whole census blocks. Kentucky was the only state where congressional district boundaries split some of the 2010 Census tabulation blocks. For further information on these blocks, please see the user-note at the bottom of the tables for this state.
The Census Bureau entered this information into its geographic database and produced tabulation block equivalency files that depicted the newly defined congressional district boundaries. Each state liaison was furnished with their file and requested to review, submit corrections, and certify the accuracy of the boundaries.
Three feature layers of Unites States internal state boundaries at different scales: 1:500K, 1:5M, and 1:20M. These layers are intended for use as a cartographic product. It is up to the user to determine which layer is most appropriate for their map.Derived from 2019 US Census Bureau Cartographic Boundary Files for state boundaries using ArcGIS Pro 2.4.3. Process:Original files were downloaded from US Census for the three different scales.Polygons were then converted to lines using the Polygon-to-Line tool.To remove the coastlines, all rows not having a LEFT_FID or RIGHT_FID attribute equal to -1 were then exported to a new geodatabase feature class.The geodatabase was zipped and uploaded to ArcGIS Online.For more information on Cartographic Boundary Files visit https://www.census.gov/programs-surveys/geography/technical-documentation/naming-convention/cartographic-boundary-file.html and https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html.Created by Ryan Davis (RDavis9@cdc.gov) on behalf of CDC/ATSDR/DTHHS/GRASP.
https://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Interactive Map Of The Us Regions technology, compiled through global website indexing conducted by WebTechSurvey.
ccchhhoi/map dataset hosted on Hugging Face and contributed by the HF Datasets community
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentationMunicipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2013, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS). However, some changes made after January 2013, including the addition and deletion of counties, are included.
The web map presents the Census 2020 Urbanized Areas (UA) and Urban Clusters (UC). For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000.This layer uses the US Census Bureau 2020 Urban Area source TIGER/Line data and corresponding List of 2020 Population Attributes.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
maringetxway/interactive-map dataset hosted on Hugging Face and contributed by the HF Datasets community
Provides regional identifiers for county based regions of various types. These can be combined with other datasets for visualization, mapping, analyses, and aggregation. These regions include:Metropolitan Statistical Areas (Current): MSAs as defined by US OMB in 2023Metropolitan Statistical Areas (2010s): MSAs as defined by US OMB in 2013Metropolitan Statistical Areas (2000s): MSAs as defined by US OMB in 2003Region: Three broad regions in North Carolina (Eastern, Western, Central)Council of GovernmentsProsperity Zones: NC Department of Commerce Prosperity ZonesNCDOT Divisions: NC Dept. of Transportation DivisionsNCDOT Districts (within Divisions)Metro Regions: Identifies Triangle, Triad, Charlotte, All Other Metros, & Non-MetropolitanUrban/Rural defined by:NC Rural Center (Urban, Regional/Suburban, Rural) - 2020 Census designations2010 Census (Urban = Counties with 50% or more population living in urban areas in 2010)2010 Census Urbanized (Urban = Counties with 50% or more of the population living in urbanized areas in 2010 (50,000+ sized urban area))Municipal Population - State Demographer (Urban = counties with 50% or more of the population living in a municipality as of July 1, 2019)Isserman Urban-Rural Density Typology