18 datasets found
  1. Annual home price appreciation in the U.S. 2024, by state

    • statista.com
    • ai-chatbox.pro
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the third quarter of 2024. The District of Columbia was the only exception, with a decline of ***** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Hawaii—the state where homes appreciated the most—the increase exceeded ** percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2024, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2024.

  2. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  3. c

    Housing Market Study Typologies

    • data.cityofrochester.gov
    • hub.arcgis.com
    Updated Feb 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Housing Market Study Typologies [Dataset]. https://data.cityofrochester.gov/datasets/housing-market-study-typologies
    Explore at:
    Dataset updated
    Feb 18, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to inform development of the City's new Comprehensive Plan, Rochester 2034, and retained czb, LLC – a firm with national expertise based in Alexandria, VA – to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. Importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long recognized that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/Dictionary: STATEFP10: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state in the 2010 census. New York State is 36. COUNTYFP10: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county in the 2010 census. Monroe County is 055. TRACTCE10: The six-digit number assigned to each census tract in a US county in the 2010 census. BLKGRPCE10: The single-digit number assigned to each block group within a census tract. The number does not indicate ranking or quality, simply the label used to organize the data. GEOID10: A unique geographic identifier based on 2010 Census geography, typically as a concatenation of State FIPS code, County FIPS code, Census tract code, and Block group number. NAMELSAD10: Stands for Name, Legal/Statistical Area Description 2010. A human-readable field for BLKGRPCE10 (Block Groups). MTFCC10: Stands for MAF/TIGER Feature Class Code 2010. For this dataset, G5030 represents the Census Block Group. BLKGRP: The GEOID that identifies a specific block group in each census tract. TYPOLOGYFi: The point system for Block Groups. Lower scores indicate higher levels of demand – including housing values and value appreciation that are above the Rochester average and vulnerabilities to distress that are below average. Higher scores indicate lower levels of demand – including housing values and value appreciation that are below the Rochester average and above presence of distressed or vulnerable properties. Points range from 1.0 to 3.0. For more information on how the points are calculated, view page 16 on the Rochester Citywide Housing Study 2018. Shape_Leng: The built-in geometry field that holds the length of the shape. Shape_Area: The built-in geometry field that holds the area of the shape. Shape_Length: The built-in geometry field that holds the length of the shape. Source: This data comes from the City of Rochester Department of Neighborhood and Business Development.

  4. T

    United States Total Housing Inventory

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Total Housing Inventory [Dataset]. https://tradingeconomics.com/united-states/total-housing-inventory
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 30, 1982 - Jun 30, 2025
    Area covered
    United States
    Description

    Total Housing Inventory in the United States decreased to 1530 Thousands in June from 1540 Thousands in May of 2025. This dataset includes a chart with historical data for the United States Total Housing Inventory.

  5. a

    Housing Affordability Index in the United States-Copy-Copy-Copy-Copy-Copy

    • uscssi.hub.arcgis.com
    Updated Nov 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). Housing Affordability Index in the United States-Copy-Copy-Copy-Copy-Copy [Dataset]. https://uscssi.hub.arcgis.com/maps/799e364bc9ef4d1a8c1f725a71d280e4
    Explore at:
    Dataset updated
    Nov 10, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    This map uses a two-color thematic shading to emphasize where areas experience the least to the most affordable housing across the US. This web map is part of the How Affordable is the American Dream story map.

    Esri’s Housing Affordability Index (HAI) is a powerful tool to analyze local real estate markets. Esri’s housing affordability index measures the financial ability of a typical household to purchase an existing home in an area. A HAI of 100 represents an area that on average has sufficient household income to qualify for a loan on a home valued at the median home price. An index greater than 100 suggests homes are easily afforded by the average area resident. A HAI less than 100 suggests that homes are less affordable. The housing affordability index is not applicable in areas with no households or in predominantly rental markets . Esri’s home value estimates cover owner-occupied homes only. For a full demographic analysis of US growth refer to Esri's Trending in 2017: The Selectivity of Growth.

    The pop-up is configured to show the following 2017 demographics for each County and ZIP Code:

    Total Households 2010-17 Annual Pop Change Median Age Percent Owner-Occupied Housing Units Median Household Income Median Home Value Housing Affordability Index Share of Income to Mortgage

  6. d

    Real Estate Data | Property Listing, Sold Properties, Rankings, Agent...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr, Real Estate Data | Property Listing, Sold Properties, Rankings, Agent Datasets | Global Coverage | For Competitive Property Pricing and Investment [Dataset]. https://datarade.ai/data-products/real-estate-property-data-grepsr-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Grepsr
    Area covered
    Kazakhstan, Spain, Congo (Democratic Republic of the), Iraq, Malaysia, Holy See, Kuwait, South Sudan, Tonga, Australia
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  7. Data from: Small Area Fair Market Rents

    • hub.arcgis.com
    • data.lojic.org
    • +1more
    Updated Apr 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2021). Small Area Fair Market Rents [Dataset]. https://hub.arcgis.com/maps/6458c67bad2a4cc7aa97514ef7ba8a0e
    Explore at:
    Dataset updated
    Apr 28, 2021
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    Small Area Fair Market Rents (SAFMRs) are FMRs calculated for ZIP Codes within Metropolitan Areas. Small Area FMRs are required to be used to set Section 8 Housing Choice Voucher payment standards in areas designated by HUD (available here). Other Housing Agencies operating in non-designated metropolitan areas may opt-in to the use of Small Area FMRs. Furthermore, Small Area FMRs may be used as the basis for setting Exception Payment Standards – PHAs may set exception payment standards up to 110 percent of the Small Area FMR. PHAs administering Public Housing units may use Small Area FMRs as an alternative to metropolitan area-wide FMRs when calculating Flat Rents. Please See HUD’s Small Area FMR Final Rule for additional information regarding the uses of Small Area FMRs.Note that this service does not denote precise SAFMR geographies. Instead, the service utilizes a relationship class to associate the information for each SAFMR with the FMR areas that its ZCTA overlaps. For example, ZCTA 94558 overlaps the Santa Rosa, Napa, and Vallejo-Fairfield MSAs. Selecting that ZCTA will reveal the SAFMR information associated with each FMR area.

      To learn more about the Small Area Fair Market Rents visit: https://www.huduser.gov/portal/datasets/fmr/smallarea/index.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: Fiscal Year 2025Date Update: 01/2025
    
  8. F

    Real Residential Property Prices for China

    • fred.stlouisfed.org
    json
    Updated Jun 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for China [Dataset]. https://fred.stlouisfed.org/series/QCNR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Real Residential Property Prices for China (QCNR628BIS) from Q2 2005 to Q1 2025 about China, residential, HPI, housing, real, price index, indexes, and price.

  9. Median residential property price New Zealand 2025, by region

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median residential property price New Zealand 2025, by region [Dataset]. https://www.statista.com/statistics/1028580/new-zealand-median-house-prices-by-region/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2025
    Area covered
    New Zealand
    Description

    The price of residential property in New Zealand was the highest in the Auckland region in June 2025, with an average sale price of around ******* New Zealand dollars. The most populated city in the country, Auckland, has consistently reported higher house prices compared to most other regions. Buying property in New Zealand, particularly in its major cities, is expensive. The nation has one of the highest house-price-to-income ratios in the world. Auckland residential market The residential housing market in Auckland is competitive. Prices have been slowly decreasing; the Auckland region experienced an annual decrease in the average residential house price in March 2025 compared to the same month in the previous year. The price of residential property in Auckland was the highest in the North Shore City district, with an average sale price of around **** million New Zealand dollars. Home financing Due to the rising cost of real estate, an increasing number of New Zealanders who want to own their own property are taking on mortgages. Most residential mortgage lending in New Zealand went to owner-occupier borrowers, followed by first home buyers. In addition to mortgage lending, previously under the KiwiSaver HomeStart initiative, first-home buyers in New Zealand were able to apply to withdraw all or part of their KiwiSaver retirement savings to assist with purchasing a first home. Nonetheless, the scheme was discontinued in May 2024. Furthermore, even with a large initial deposit, it may take decades for many borrowers to pay off their mortgage.

  10. Data from: Neighborhood Socioeconomic and demographic changes in Baltimore's...

    • search.dataone.org
    • portal.edirepository.org
    • +1more
    Updated Oct 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dexter H Locke (2022). Neighborhood Socioeconomic and demographic changes in Baltimore's (BES) Neighborhoods: 1930 to 2010 [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F5000%2F1
    Explore at:
    Dataset updated
    Oct 11, 2022
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Dexter H Locke
    Time period covered
    Jan 1, 1930 - Jan 1, 2017
    Area covered
    Variables measured
    Name, p_own, p_black, p_eduHS, p_white, time_yr, Comments, neigh_yr, p_eduCOL, p_vacant, and 5 more
    Description

    This dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.

  11. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  12. Historic Redlining Scores for 2010 and 2020 US Census Tracts

    • redivis.com
    application/jsonl +7
    Updated Jun 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2022). Historic Redlining Scores for 2010 and 2020 US Census Tracts [Dataset]. https://redivis.com/datasets/rnef-d56dafea8
    Explore at:
    sas, avro, csv, application/jsonl, arrow, spss, parquet, stataAvailable download formats
    Dataset updated
    Jun 28, 2022
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    Description

    Abstract

    The Home Owners’ Loan Corporation (HOLC) was a U.S. federal agency that graded mortgage investment risk of neighborhoods across the U.S. between 1935 and 1940. HOLC residential security maps standardized neighborhood risk appraisal methods that included race and ethnicity, pioneering the institutional logic of residential “redlining.”

    Methodology

    The Mapping Inequality Project digitized the HOLC mortgage security risk maps from the 1930s. We overlaid the HOLC maps with 2010 and 2020 census tracts for 142 cities across the U.S. using ArcGIS and determined the proportion of HOLC residential security grades contained within the boundaries. We assigned a numerical value to each HOLC risk category as follows: 1 for “A” grade, 2 for “B” grade, 3 for “C” grade, and 4 for “D” grade. We calculated a historic redlining score from the summed proportion of HOLC residential security grades multiplied by a weighting factor based on area within each census tract. A higher score means greater redlining of the census tract. Continuous historic redlining score, assessing the degree of “redlining,” as well as 4 equal interval divisions of redlining, can be linked to existing data sources by census tract identifier allowing for one form of structural racism in the housing market to be assessed with a variety of outcomes.

    The 2010 files are set to census 2010 tract boundaries. The 2020 files use the new census 2020 tract boundaries, reflecting the increase in the number of tracts from 12,888 in 2010, to 13,488 in 2020. Use the 2010 HRS with decennial census 2010 or ACS 2010-2019 data. As of publication (10/15/2020) decennial census 2020 data for the P1 (population) and H1 (housing) files are available from census.

  13. l

    Labor Market Engagement Index

    • data.lojic.org
    • hub.arcgis.com
    • +3more
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Labor Market Engagement Index [Dataset]. https://data.lojic.org/datasets/HUD::labor-market-engagement-index/geoservice
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    LABOR MARKET ENGAGEMENT INDEXSummary

    The labor market engagement index provides a summary description of the relative intensity of labor market engagement and human capital in a neighborhood. This is based upon the level of employment, labor force participation, and educational attainment in a census tract (i). Formally, the labor market index is a linear combination of three standardized vectors: unemployment rate (u), labor-force participation rate (l), and percent with a bachelor’s degree or higher (b), using the following formula:

    Where means and standard errors are estimated over the national distribution. Also, the value for the standardized unemployment rate is multiplied by -1.

    Interpretation

    Values are percentile ranked nationally and range from 0 to 100. The higher the score, the higher the labor force participation and human capital in a neighborhood.

    Data Source: American Community Survey, 2011-2015Related AFFH-T Local Government, PHA and State Tables/Maps: Table 12; Map 9.

    To learn more about the Labor Market Engagement Index visit: https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 07/2020

  14. Average price per square meter of an apartment in Europe 2025, by city

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average price per square meter of an apartment in Europe 2025, by city [Dataset]. https://www.statista.com/statistics/1052000/cost-of-apartments-in-europe-by-city/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    Geneva stands out as Europe's most expensive city for apartment purchases in early 2025, with prices reaching a staggering 15,720 euros per square meter. This Swiss city's real estate market dwarfs even high-cost locations like Zurich and London, highlighting the extreme disparities in housing affordability across the continent. The stark contrast between Geneva and more affordable cities like Nantes, France, where the price was 3,700 euros per square meter, underscores the complex factors influencing urban property markets in Europe. Rental market dynamics and affordability challenges While purchase prices vary widely, rental markets across Europe also show significant differences. London maintained its position as the continent's priciest city for apartment rentals in 2023, with the average monthly costs for a rental apartment amounting to 36.1 euros per square meter. This figure is double the rent in Lisbon, Portugal or Madrid, Spain, and substantially higher than in other major capitals like Paris and Berlin. The disparity in rental costs reflects broader economic trends, housing policies, and the intricate balance of supply and demand in urban centers. Economic factors influencing housing costs The European housing market is influenced by various economic factors, including inflation and energy costs. As of April 2025, the European Union's inflation rate stood at 2.4 percent, with significant variations among member states. Romania experienced the highest inflation at 4.9 percent, while France and Cyprus maintained lower rates. These economic pressures, coupled with rising energy costs, contribute to the overall cost of living and housing affordability across Europe. The volatility in electricity prices, particularly in countries like Italy where rates are projected to reach 153.83 euros per megawatt hour by February 2025, further impacts housing-related expenses for both homeowners and renters.

  15. Maryland Housing Designated Areas - Difficult Development Areas

    • data.imap.maryland.gov
    • arcgis.com
    • +2more
    Updated May 1, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2017). Maryland Housing Designated Areas - Difficult Development Areas [Dataset]. https://data.imap.maryland.gov/datasets/maryland-housing-designated-areas-difficult-development-areas/api
    Explore at:
    Dataset updated
    May 1, 2017
    Dataset provided by
    Authors
    ArcGIS Online for Maryland
    Area covered
    Description

    Low-Income Housing Tax Credit Qualified Census Tracts must have 50 percent of households with incomes below 60 percent of the Area Median Gross Income (AMGI) or have a poverty rate of 25 percent or more. Difficult Development Areas (DDA) are designated by the U.S. Department of Housing and Urban Development and are based on Fair Market Rents, income limits, the 2010 census counts, and 2006–10 5-year American Community Survey data when they becomes available. Beginning with the 2016 DDA designations, metropolitan DDAs will use Small Area Fair Market Rents (FMRs) rather than metropolitan-area FMRs for designating metropolitan DDAs. Maps of Qualified Census Tracts and Difficult Development Areas are available at: huduser.gov/sadda/sadda_qct.html. This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Feature Service Link:https://mdgeodata.md.gov/imap/rest/services/BusinessEconomy/MD_HousingDesignatedAreas/FeatureServer/4

  16. ACS 5YR CHAS Estimate Data by Tract

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Aug 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). ACS 5YR CHAS Estimate Data by Tract [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/HUD::acs-5yr-chas-estimate-data-by-tract/about
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The U.S. Department of Housing and Urban Development (HUD) periodically receives "custom tabulations" of Census data from the U.S. Census Bureau that are largely not available through standard Census products. These datasets, known as "CHAS" (Comprehensive Housing Affordability Strategy) data, demonstrate the extent of housing problems and housing needs, particularly for low income households. The primary purpose of CHAS data is to demonstrate the number of households in need of housing assistance. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income). CHAS data provides counts of the numbers of households that fit these HUD-specified characteristics in a variety of geographic areas. In addition to estimating low-income housing needs, CHAS data contributes to a more comprehensive market analysis by documenting issues like lead paint risks, "affordability mismatch," and the interaction of affordability with variables like age of homes, number of bedrooms, and type of building. This dataset is a special tabulation of the 2016-2020 American Community Survey (ACS) and reflects conditions over that time period. The dataset uses custom HUD Area Median Family Income (HAMFI) figures calculated by HUD PDR staff based on 2016-2020 ACS income data. CHAS datasets are used by Federal, State, and Local governments to plan how to spend, and distribute HUD program funds. To learn more about the Comprehensive Housing Affordability Strategy (CHAS), visit: https://www.huduser.gov/portal/datasets/cp.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs Data Dictionary: DD_ACS 5-Year CHAS Estimate Data by Tract Date of Coverage: 2016-2020

  17. Maryland Housing Designated Areas - Small Difficult Development Areas

    • hub.arcgis.com
    • dev-maryland.opendata.arcgis.com
    • +1more
    Updated May 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2017). Maryland Housing Designated Areas - Small Difficult Development Areas [Dataset]. https://hub.arcgis.com/datasets/30df6f77207c4af58c56c8341d9597ee
    Explore at:
    Dataset updated
    May 23, 2017
    Dataset provided by
    Authors
    ArcGIS Online for Maryland
    Area covered
    Description

    Low-Income Housing Tax Credit Qualified Census Tracts must have 50 percent of households with incomes below 60 percent of the Area Median Gross Income (AMGI) or have a poverty rate of 25 percent or more. Difficult Development Areas (DDA) are designated by the U.S. Department of Housing and Urban Development and are based on Fair Market Rents, income limits, the 2010 census counts, and 2006–10 5-year American Community Survey data when they becomes available. Beginning with the 2016 DDA designations, metropolitan DDAs will use Small Area Fair Market Rents (FMRs) rather than metropolitan-area FMRs for designating metropolitan DDAs. Maps of Qualified Census Tracts and Difficult Development Areas are available at: huduser.gov/sadda/sadda_qct.html. This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Feature Service Link:https://mdgeodata.md.gov/imap/rest/services/BusinessEconomy/MD_HousingDesignatedAreas/FeatureServer/3

  18. Housing Choice Vouchers by Tract

    • hub.arcgis.com
    • gisnation-sdi.hub.arcgis.com
    Updated Apr 27, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2019). Housing Choice Vouchers by Tract [Dataset]. https://hub.arcgis.com/maps/fedmaps::housing-choice-vouchers-by-tract
    Explore at:
    Dataset updated
    Apr 27, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Housing Choice Vouchers by TractThis National Geospatial Data Asset (NGDA) dataset, shared as a Department of Housing and Urban Development (HUD) feature layer, displays the census tracts of those areas with residents who participate in the Housing Choice Voucher Program (HCVP) in the United States. Per HUD, "The Housing Choice Voucher Program (also known as Section 8) helps low-income families, elderly persons, veterans and disabled individuals afford housing in the private market. Program participants can choose any eligible housing unit, including single-family homes, townhouses, and apartments, with rent partially covered by a subsidy paid directly to the landlord. There are around 2,000 Local Public Housing Agencies (PHAs) across the country that administer the HCV program with funding from HUD."Census Tract 800609Data currency: current federal service (HCV by Tract)NGDAID: 121 (Assisted Housing - Housing Choice Vouchers by Tract - National Geospatial Data Asset (NGDA))OGC API Features Link: Not AvailableFor more information, please visit: HCV Applicant and Tenant Resources; Housing Choice Vouchers by TractSupport Documentation: Housing Choice Vouchers by TractFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes." For other NGDA Content: Esri Federal Datasets

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Annual home price appreciation in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
Organization logo

Annual home price appreciation in the U.S. 2024, by state

Explore at:
Dataset updated
Jun 20, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

House prices grew year-on-year in most states in the U.S. in the third quarter of 2024. The District of Columbia was the only exception, with a decline of ***** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Hawaii—the state where homes appreciated the most—the increase exceeded ** percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2024, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2024.

Search
Clear search
Close search
Google apps
Main menu