Digital Elevation Map of North America
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Physical Points in the Geographic Names Information System (GNIS)This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays physical points from the Geographic Names Information System (GNIS). Per USGS, “the Geographic Names Information System (GNIS) is the federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types.”Physical Points in the Western New York RegionData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Physical Points) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 34 (Geographic Names Information System (GNIS) - USGS National Map Downloadable Data Collection)OGC API Features Link: (Physical Points in the Geographic Names Information System (GNIS) - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: U.S. Board on Geographic NamesFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Cultural Resources Theme Community. Per the Federal Geospatial Data Committee (FGDC), Cultural Resources are defined as "features and characteristics of a collection of places of significance in history, architecture, engineering, or society. Includes National Monuments and Icons."For other NGDA Content: Esri Federal Datasets
Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.
Important Note: This item is in mature support as of June 2021 and is no longer updated. This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset provides the geographic names data for Iowa. All names data products are extracted from the Geographic Names Information System (GNIS), the Federal Government's repository of official geographic names.
The GNIS contains the federally recognized name of each feature and defines its location by State, county, USGS topographic map, and geographic coordinates. GNIS also lists variant names, which are non-official names by which a feature is or was known. Other attributes include unique Feature ID and feature class. Feature classes under the purview of the U.S. Board on Geographic Names include natural features, unincorporated populated places, canals, channels, reservoirs, and more.
description: This dataset includes high quality (800 Dots Per Inch - DPI), 24 bit color images of Minnesota's original Public Land Survey (PLS) plats created during the first government land survey of the state from 1848 to 1907. Currently housed at the Office of the Secretary of State, these plats were created by the U.S. Surveyor General's Office. This collection of more than 3,600 maps also includes later General Land Office (GLO) and the Bureau of Land Management (BLM) maps - up to the year 2001. Minnesota's survey plat maps serve as the fundamental legal records for real estate in the state; all property titles and descriptions stem from them. They also serve as an essential resource for surveyors and as an analytical tool for the state's physical geography prior to European settlement. Finally, they serve as a testimony to years and years of hard work by the surveying community, often under challenging conditions. In recent years the deteriorating physical condition of the older maps and the needs of technologically more sophisticated researchers, who require access to the maps, have made handling the original paper records increasingly less practical. To meet this challenge, the Office of the Secretary of State, the State Archives of the Minnesota Historical Society, the Minnesota Department of Transportation, MnGeo (formerly the Land Management Information Center - LMIC) and the Minnesota Association of County Surveyors collaborated in a digitization project which produced images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes worth of data. Funding was provided by the Minnesota Department of Transportation.; abstract: This dataset includes high quality (800 Dots Per Inch - DPI), 24 bit color images of Minnesota's original Public Land Survey (PLS) plats created during the first government land survey of the state from 1848 to 1907. Currently housed at the Office of the Secretary of State, these plats were created by the U.S. Surveyor General's Office. This collection of more than 3,600 maps also includes later General Land Office (GLO) and the Bureau of Land Management (BLM) maps - up to the year 2001. Minnesota's survey plat maps serve as the fundamental legal records for real estate in the state; all property titles and descriptions stem from them. They also serve as an essential resource for surveyors and as an analytical tool for the state's physical geography prior to European settlement. Finally, they serve as a testimony to years and years of hard work by the surveying community, often under challenging conditions. In recent years the deteriorating physical condition of the older maps and the needs of technologically more sophisticated researchers, who require access to the maps, have made handling the original paper records increasingly less practical. To meet this challenge, the Office of the Secretary of State, the State Archives of the Minnesota Historical Society, the Minnesota Department of Transportation, MnGeo (formerly the Land Management Information Center - LMIC) and the Minnesota Association of County Surveyors collaborated in a digitization project which produced images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes worth of data. Funding was provided by the Minnesota Department of Transportation.
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use
Binary raster dataset (.txt format) containing flood susceptibility maps related to 100-year river floods occurring in the continental U.S. These mapping products were derived through terrain analysis and a technique of pattern classification performed on DEMs obtained from HydroSHEDS (http://hydrosheds.cr.usgs.gov/overview.php) with a 3 arc-second resolution (0.00083333 degree, approximatively 90 m at the equator). Specifically, the flood-prone areas were identified by applying a linear binary classifier based upon the Geomorphic Flood Index (Manfreda et al., 2015; Samela et al., 2015; Samela et al., 2016 ). The raster maps have a 90 m resolution and are geo-referenced. The coordinate system of the maps is UTM (Universal Transverse Mercator) Zone 17N, the projection is Transverse Mercator, and the geodetic system is NAD (North American Datum) 1983. To simplify the management and the use of the data, the continental U.S. was divided into eighteen major water resources regions according to the hydrologic units identified by the United States Geological Survey.
https://www.icpsr.umich.edu/web/ICPSR/studies/2913/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2913/terms
The 1998 Dress Rehearsal was conducted as a prelude to the United States Census of Population and Housing, 2000, in the following locations: (1) Columbia, South Carolina, and surrounding areas, including the town of Irmo and the counties of Chester, Chesterfield, Darlington, Fairfield, Kershaw, Lancaster, Lee, Marlboro, Newberry, Richland, and Union, (2) Sacramento, California, and (3) Menominee County, Wisconsin, including the Menominee American Indian Reservation. This collection contains map files showing various levels of geography (in the form of Census Tract Outline Maps, Voting District/State Legislative District Outline Maps, and County Block Maps), TIGER/Line digital files, and Corner Point files for the Census 2000 Dress Rehearsal sites. The Corner Point data files contain the bounding latitude and longitude coordinates for each individual map sheet of the 1998 Dress Rehearsal Public Law (P.L.) 94-171 map products. These files include a sheet identifier, minimum and maximum longitude, minimum and maximum latitude, and the map scale (integer value) for each map sheet. The latitude and longitude coordinates are in decimal degrees and expressed as integer values with six implied decimal places. There is a separate Corner Point File for each of the three map types: County Block Map, Census Tract Outline Map, and Voting District/State Legislative District Outline Map. Each of the three map file types is provided in two formats: Portable Document Format (PDF), for viewing, and Hewlett-Packard Graphics Language (HP-GL) format, for plotting. The County Block Maps show the greatest detail and the most complete set of geographic information of all the maps. These large-scale maps depict the smallest geographic entities for which the Census Bureau presents data -- the census blocks -- by displaying the features that delineate them and the numbers that identify them. These maps show the boundaries, names, and codes for American Indian/Alaska Native areas, county subdivisions, places, census tracts, and, for this series, the geographic entities that the states delineated in Phase 2, Voting District Project, of the Redistricting Data Program. The HP-GL version of the County Block Maps is broken down into index maps and map sheets. The map sheets cover a small area, and the index maps are composed of multiple map sheets, showing the entire area. The intent of the County Block Map series is to provide a map for each county on the smallest possible number of map sheets at the maximum practical scale, dependent on the area size of the county and the density of the block pattern. The latter affects the display of block numbers and feature identifiers. The Census Tract Outline Maps show the boundaries and numbers of census tracts, and name the features underlying the boundaries. These maps also show the boundaries and names of counties, county subdivisions, and places. They identify census tracts in relation to governmental unit boundaries. The mapping unit is the county. These large-format maps are produced to support the P.L. 94-171 program and all other 1998 Dress Rehearsal data tabulations. The Voting District/State Legislative District Outline Maps show the boundaries and codes for voting districts as delineated by the states in Phase 2, Voting District Project, of the Redistricting Data Program. The features underlying the voting district boundaries are shown, as well as the names of these features. Additionally, for states that submit the information, these maps show the boundaries and codes for state legislative districts and their underlying features. These maps also show the boundaries of and names of American Indian/Alaska Native areas, counties, county subdivisions, and places. The scale of the district maps is optimized to keep the number of map sheets for each area to a minimum, but the scale and number of map sheets will vary by the area size of the county and the voting districts and state legislative districts delineated by the states. The Census 2000 Dress Rehearsal TIGER/Line Files consist of line segments representing physical features and governmental and statistical boundaries. The files contain information distributed over a series of record types for the spatial objects of a county. These TIGER/Line Files are an extract of selected geographic and cartographic information from the Census TIGER (Topological
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to http://nationalmap.gov/gnis.html.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Geographic Names Information System (GNIS) is the Federal and national standard for geographic nomenclature. The U.S. Geological Survey's National Geospatial Program developed the GNIS in support of the U.S. Board on Geographic Names as the official repository of domestic geographic names data, the official vehicle for geographic names use by all departments of the Federal Government, and the source for applying geographic names to Federal electronic and printed products.The GNIS contains information about physical geographic features of many types in the United States, associated areas, and Antarctica, current and historical, but not including roads and highways or cultural features. The database holds the Federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature designations, feature classification, historical and descriptive information.The GNIS Feature ID, Official Feature Name, and Official Feature Location are American National Standards Institute standards as specified in ANSI INCITS 446-2008 (Identifying Attributes for Named Physical and Cultural Geographic Features (Except Roads and Highways) of the United States, Its Territories, Outlying Areas, and Freely Associated Areas, and the Waters of the Same to the Limit of the Twelve-Mile Statutory Zone). The standard is available at the ANSI Web Store.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Physical Points in the Geographic Names Information System (GNIS)This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays physical points from the Geographic Names Information System (GNIS). Per USGS, “the Geographic Names Information System (GNIS) is the federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types.”Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (geonames) and will support mapping, analysis, data exports and OGC API – Feature access.Data.gov: Geographic Names Information System (GNIS) - USGS National Map Downloadable Data CollectionGeoplatform: Geographic Names Information System (GNIS) - USGS National Map Downloadable Data CollectionFor more information, please visit: U.S. Board on Geographic NamesFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Cultural Resources Theme Community. Per the Federal Geospatial Data Committee (FGDC), Cultural Resources are defined as "features and characteristics of a collection of places of significance in history, architecture, engineering, or society. Includes National Monuments and Icons."For other NGDA Content: Esri Federal Datasets
USGS developed The National Map (TNM) Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map viewer allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://nationalmap.gov/gnis.html.
The Environment Map (US Edition) web map consists of vector tile layers that form a detailed basemap for the world, featuring a neutral style with content adjusted to support environment, landscape, natural resources, hydrologic and physical geography layers. The layers in this map provide unique capabilities for customization, high-resolution display and offline use in mobile devices. They are built using the same data sources used for other Esri basemaps.This basemap is available in the United States Vector Basemaps gallery and consists of 4 vector tile layers and one raster tile layer: The Environment Detail and Label (US Edition) vector tile reference layer for the world with administrative boundaries and labels; populated places with names; ocean names; topographic features; and rail, road, park, school, and hospital labels. The Environment Surface Water and Label vector tile surface water layer for the world with rivers, lakes, streams, and canals with respective labels. The Environment Watersheds vector tile layer that provides watersheds boundaries. The Environment Base multisource base layer for the world with vegetation, parks, farming areas, open space, indigenous lands, military bases, bathymetry, large scale contours, elevation values, airports, zoos, golf courses, cemeteries, hospitals, schools, urban areas, and building footprints. World Hillshade raster tile layerThe vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.The Geographic Names Information System contains information about physical and cultural geographic features of all types in the United States, associated areas, and Antarctica, current and historical, but not including roads and highways. The database holds the Federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature designations, feature classification, historical and descriptive information, and for some categories the geometric boundaries. The database assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. The GNIS collects data from a broad program of partnerships with Federal, State, and local government agencies and other authorized contributors. The GNIS provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map and feature services, file download services, and customized files upon request.This layer is no longer being updated. Please be aware that the data currency is only relevant up to its final update date. Consider accessing select updated features types at https://viewer.nationalmap.gov/services/ for services or https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Struct/National/GDB/ for geodatabase download.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Purpose: create a map of potential alpine habitat in the western USA as a basis for future studies in ecology and biogeography. Location: all mountains in the continental USA west of 104° longitude. Procedure: manually identify treeline elevations; interpolate a surface of these elevations; intersect the surface with a 90-m resolution DEM; record all areas above these elevations as projected alpine habitat; for display, map the area recorded as alpine at 90-m resolution. Products: a map for display; a dataset of elevations of treeline at 268 points on 66 mountain ranges in the western USA (61) and Canada (5); a dataset of points recorded as above treeline at 90-m resolution. Methods All mountain ranges in the western USA and southern Canada were examined. The relatively continuous Rocky Mountains were subdivided according to named ranges or previously identified regions. These totaled 61 in the USA and 5 in Canada. The Canadian ranges were included to improve the interpolation at the northern end. At each range at least four treeline ecotone points were selected, one each on the north, east, south, and western edges of the range. Additional points were recorded on larger ranges such as the Sierra Nevada. The points were selected on Google Earth imagery by Malanson, who is experienced in treeline research (e.g., Alftine and Malanson 2004, Malanson and Butler 1994, Malanson et al. 2001, 2007, 2009, 2012, 2019, 2023, Smith-McKenna et al. 2014, Grafius and Malanson 2015, Weiss et al. 2015). The uppermost continuous forest cover was identified for the point. If an extensive zone of krummholz was observed, its elevational midpoint was identified. The elevation, latitude, and longitude of each was recorded. The points were interpolated to create an elevational surface across the region. Both inverse distance weighting and kriging were applied. The kriging surface had more error at the original points and was rejected for further use. The IDW surface was intersected with the USGS 90-meter DEM (https://www.sciencebase.gov/catalog/item/542aebf9e4b057766eed286a). All 90-m points above the IDW surface were recorded as potential alpine habitat. To create a map for outreach and display, projected alpine habitat was mapped at 90 m spatial resolution based on the above record. The potential alpine habitat cells were mapped as red against a gray-shaded relief map of 11 western states. References
Alftine KJ, Malanson GP. 2004. Directional positive feedback and pattern at an alpine tree line. Journal of Vegetation Science 15:3-12. Grafius D, Malanson GP. 2015. Biomass distributions in dwarf tree, krummholz, and tundra vegetation in the alpine treeline ecotone. Physical Geography 36: 337-352. Malanson GP, Brown DG, Butler DR, Cairns DM, Fagre DB, Walsh SJ. 2009. Ecotone dynamics: invasibility of alpine tundra by tree species from the subalpine forest. In DR Butler, GP Malanson, SJ Walsh & DB Fagre, eds. The Changing Alpine Treeline: The Example of Glacier National Park, Montana, USA. Elsevier, Amsterdam, 35-61. Malanson GP, Butler DR, Fagre DB, Walsh SJ, Tomback DF, Daniels LD, Resler LM, Smith WK, Weiss DJ, Peterson DL, Bunn AG, Hiemstra CA, Liptzin D, Bourgeron PS, Shen Z, Millar CI. 2007b. Alpine treeline of western North America: linking organism-to-landscape dynamics. Physical Geography 28: 378-396. Malanson GP, Butler DR, Fagre DB. 2007a. Alpine ecosystem dynamics and change: a view from the heights. In T Prato, DB Fagre (eds) Sustaining Rocky Mountain Landscapes: Science, Policy and Management of the Crown of the Continent Ecosystem. Resources for the Future, Washington DC, 85-101. Malanson GP, Butler DR. 1994. Tree - tundra competitive hierarchies, soil fertility gradients, and the elevation of treeline in Glacier National Park, Montana. Physical Geography 15: 166-180. Malanson GP, Butler DR. 1994. Tree - tundra competitive hierarchies, soil fertility gradients, and the elevation of treeline in Glacier National Park, Montana. Physical Geography 15: 166-180. Malanson GP, Resler LM, Bader MY, Holtmeier F-K, Weiss DJ, Butler DR, Fagre DB, Daniels LD. 2011. Mountain treelines: a roadmap for research orientation. Arctic, Antarctic, and Alpine Research 43: 167-177. Malanson GP, Resler LM, Butler DR, Fagre DB. 2019. Mountain plant communities: uncertain sentinels? Progress in Physical Geography 43:521-543. Malanson GP. 2023. Inclusions and exclusions in treeline definitions. Journal of Biogeography, in press. Smith-McKenna E, Malanson GP, Resler LM, Carstensen LW, Prisley SP, and Tomback DF. 2014. Cascading effects of feedbacks, disease, and climate change on alpine treeline dynamics. Environmental Modelling & Software 62: 85-96. Weiss D, Malanson GP, Walsh SJ. 2015. Multi-scale relationships between alpine treeline elevation and hypothesized environmental controls in the western United States. Annals of the Association of American Geographers 105: 437-453.
New_Jersey_1971_78_Digitized_Shoreline.zip features a digitized historic shoreline for the New Jersey coastline (Point Pleasant, NJ to Longport, NJ) from 1971 to 1978. Imagery of the New Jersey coastline was acquired from the New Jersey Geographic Information Network (NJGIN) as two images: “1970 NJDEP Wetlands Basemap” (1971-78) and the “1977 Tidelands Basemaps” (1977-78). These images are available as a web mapping service (WMS) through the NJGIN website (https://njgin.state.nj.us/NJ_NJGINExplorer/jviewer.jsp?pg=wms_instruct). To reduce digitizing error, the imagery was acquired on a hard drive from the NJGIN via personal communication. Using ArcMap 10.3.1, the "1970 NJDEP Wetlands Basemap" was used to delineate and digitize historical foreshore, backshore, mainland, and island shoreline positions, with the “1977 Tidelands Basemaps” being used to fill in missing shorelines and clarify areas of uncertainty from the 1970s imagery. These shorelines were digitized for use in long-term shoreline and wetland analyses for Hurricane Sandy wetland physical change assessment.
description: This shapefile denotes the location of underwater photos and/or video that were collected by NOAA scientists using a Spectrum Phantom S2 ROV (remotely operated vehicle). Photos and/or video were collected between 03/18/2010 and 04/05/2010 along 33 transects south of St. John and St. Thomas in the U.S. Virgin Islands. These photos and videos will be manually classified into different habitat classes, and integrated with the abiotic data collected by the acoustic sonar (sound navigation and ranging) systems to develop a benthic habitat map for the U.S. Caribbean. Habitat maps describe the location of habitat features (in relation to the shoreline), their physical composition and the types of organisms that colonize them. Fundamentally, habitat maps provide critical information about the extent, health and composition of marine resources, which is vital for communicating information about the distribution and abundance of species to resource managers, scientists and the p ublic. Habitat maps also support an increasing number of landscape ecology studies, as well as the process of marine spatial planning, including the design and evaluation of marine protected areas (MPAs).; abstract: This shapefile denotes the location of underwater photos and/or video that were collected by NOAA scientists using a Spectrum Phantom S2 ROV (remotely operated vehicle). Photos and/or video were collected between 03/18/2010 and 04/05/2010 along 33 transects south of St. John and St. Thomas in the U.S. Virgin Islands. These photos and videos will be manually classified into different habitat classes, and integrated with the abiotic data collected by the acoustic sonar (sound navigation and ranging) systems to develop a benthic habitat map for the U.S. Caribbean. Habitat maps describe the location of habitat features (in relation to the shoreline), their physical composition and the types of organisms that colonize them. Fundamentally, habitat maps provide critical information about the extent, health and composition of marine resources, which is vital for communicating information about the distribution and abundance of species to resource managers, scientists and the p ublic. Habitat maps also support an increasing number of landscape ecology studies, as well as the process of marine spatial planning, including the design and evaluation of marine protected areas (MPAs).
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Geographic ranges of pine savanna and woodland vegetation types in the southeastern U.S. Divisions are based on abundance of overstory trees and ground-layer grasses. Data for Figure in:Peet, R.K., Platt, W.J., Costanza, J.K. 2018. The ecology and management of fire-maintained savanna ecosystems of the Southeastern U.S. Coastal Plain. Chapter in: Ecology and Recovery of Eastern Old-Growth Forests. Editors: Keeton, W., Barton, A., Island Press, Washington, D.C., USA, pp. 39-62
Digital Elevation Map of North America