92 datasets found
  1. Population of the United States 1610-2020

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the United States 1610-2020 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).

    Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.

  2. Vintage 2014 Population Estimates: Subcounty Population Places and MCDs

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2014 Population Estimates: Subcounty Population Places and MCDs [Dataset]. https://catalog.data.gov/dataset/vintage-2014-population-estimates-subcounty-population-places-and-mcds
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Subcounty Resident Population Estimates // Source: U.S. Census Bureau, Population Division // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. See Geographic Terms and Definitions at http://www.census.gov/popest/about/geo/terms.html for a list of the states that are included in each region and division. For functional status codes, see http://www.census.gov/geo/reference/codes/place.html. All geographic boundaries for these population estimates are as of current vintage year. An (X) in the 2010 Census field indicates a government that was formed or incorporated after the 2010 Census. See additional information on these areas in the Geographic Boundary Change Notes (http://www.census.gov/geo/reference/boundary-changes.html). For population estimates methodology statements, see http://www.census.gov/popest/methodology/index.html. // The estimates base populations for the unincorporated part of Gadsden County, FL and Rockwell City city, IA (located in Calhoun County) include different group quarters population than enumerated in the 2010 Census. After comparison with other Census Bureau data collection efforts, the Census Bureau determined that the 2010 Census enumeration of the group quarters population in these areas was incomplete. Although not eligible for the Count Question Resolution program, the Census Bureau concluded that including the additional group quarters population for these two areas into the population estimates base would provide more accurate estimates for each area. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2014) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.

  3. a

    Total Population (by Zip Code) 2015

    • opendata.atlantaregional.com
    Updated Jun 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2018). Total Population (by Zip Code) 2015 [Dataset]. https://opendata.atlantaregional.com/datasets/GARC::total-population-by-zip-code-2015/explore?showTable=true
    Explore at:
    Dataset updated
    Jun 1, 2018
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the 2010 Census and American Community Survey 5-year estimates for 2011-2015, to show total population by zip code in the Atlanta region.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number. ACS data presented here represent combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2011-2015). Therefore, these data do not represent any one specific point in time or even one specific year. For further explanation of ACS estimates and methodology, click here.

    Attributes:

    ZIP = Zip code (text)

    ZIP_dbl = Zip code (numeric)

    Total_Population_2010 = Total Population, 2010 Census

    Total_Population_2011_2015_ACS = Total Population, 2011-2015 American Community Survey (ACS)

    last_edited_date = Last date the feature was edited by ARC

    Source: U.S. Census Bureau, Atlanta Regional Commission

    Date: 2010; 2011-2015

    For additional information, please visit the Atlanta Regional Commission at www.atlantaregional.com.

    Credits

    U.S. Census Bureau, Atlanta Regional Commission

  4. U.S. population by sex 1980-2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, U.S. population by sex 1980-2024 [Dataset]. https://www.statista.com/statistics/241495/us-population-by-sex/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of July 1, 2024, there were 168.34 million males and 171.77 million females living in the United States. The overall population of the United States has remained steady since 2010.

  5. f

    ChangeSince2010 RC ACS2019

    • gisdata.fultoncountyga.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Sep 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). ChangeSince2010 RC ACS2019 [Dataset]. https://gisdata.fultoncountyga.gov/maps/GARC::changesince2010-rc-acs2019-1
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. For further explanation of ACS estimates and margin of error, visit Census ACS website.

  6. K

    Denver, Colorado Census Block Groups (2010)

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated May 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City and County of Denver, Colorado (2019). Denver, Colorado Census Block Groups (2010) [Dataset]. https://koordinates.com/layer/101886-denver-colorado-census-block-groups-2010/
    Explore at:
    mapinfo mif, geodatabase, kml, pdf, shapefile, dwg, mapinfo tab, csv, geopackage / sqliteAvailable download formats
    Dataset updated
    May 15, 2019
    Dataset authored and provided by
    City and County of Denver, Colorado
    Area covered
    Description

    The U.S. Census Bureau's year 2010 census block group boundaries and data for the City and County of Denver. The original census block group boundaries have been adjusted to various Denver GIS data layers to increase the spatial accuracy of this data. Although every effort was made to ensure the accurate rectification of the data, due to geographic problems inherent in the original 2010 TIGER shapefiles, errors may exist. This data-set includes the housing and population data from redistricting file P.L. 94-171 of the 2010 census. The data-set does not contain data for any enclaves administered by other jurisdictions that are located within the City and County of Denver's boundary.

  7. A

    IDPH Population Projections 2014 Edition

    • data.amerigeoss.org
    • data.wu.ac.at
    csv, json, rdf, xml
    Updated Jul 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). IDPH Population Projections 2014 Edition [Dataset]. https://data.amerigeoss.org/dataset/population-projections-2014-edition
    Explore at:
    xml, rdf, csv, jsonAvailable download formats
    Dataset updated
    Jul 28, 2019
    Dataset provided by
    United States[old]
    Description

    Introduction

    This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends.

    Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years).

    Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates.

    Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period.

    Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health.

    Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group.

    Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods.

    Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.

  8. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  9. w

    City and County of Denver: Census Tracts (2010)

    • data.wu.ac.at
    application/acad, csv +3
    Updated Jan 11, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City and County of Denver (2018). City and County of Denver: Census Tracts (2010) [Dataset]. https://data.wu.ac.at/schema/opencolorado_org/ZDUyODYwNzAtZWEzMS00NjgzLThmOGYtNTA0ZTAzNjAxOWEx
    Explore at:
    zip(386725.0), application/acad(393054.0), kmz(426186.0), xml(35822.0), csv(122327.0), zip(315733.0)Available download formats
    Dataset updated
    Jan 11, 2018
    Dataset provided by
    City and County of Denver
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Denver
    Description

    The U.S. Census Bureau's year 2010 census tract boundaries and data for the City and County of Denver. The original census tract boundaries have been adjusted to various Denver GIS data layers to increase the spatial accuracy of this data. Although every effort was made to ensure the accurate rectification of the data, due to geographic problems inherent in the original 2010 TIGER Shapefiles, errors may exist. This data-set includes the housing and population data from redistricting file P.L. 94-171 of the 2010 census. The data-set does not contain data for any enclaves administered by other jurisdictions that are located within the City and County of Denver's boundary.

  10. a

    ChangeSince2000 WFF ACS2019

    • opendata.atlantaregional.com
    Updated Sep 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). ChangeSince2000 WFF ACS2019 [Dataset]. https://opendata.atlantaregional.com/maps/changesince2000-wff-acs2019-1
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. For further explanation of ACS estimates and margin of error, visit Census ACS website.

  11. a

    ChangeSince2000 RC ACS2019

    • hub.arcgis.com
    • arc-garc.opendata.arcgis.com
    Updated Sep 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). ChangeSince2000 RC ACS2019 [Dataset]. https://hub.arcgis.com/maps/GARC::changesince2000-rc-acs2019-1
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. For further explanation of ACS estimates and margin of error, visit Census ACS website.

  12. a

    Demographic change 2010 - 2023 (all geographies, statewide)

    • arc-garc.opendata.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Demographic change 2010 - 2023 (all geographies, statewide) [Dataset]. https://arc-garc.opendata.arcgis.com/maps/f70f4d7defb94a20987e59061b012bbe
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  13. M

    California Population 1900-2024

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). California Population 1900-2024 [Dataset]. https://www.macrotrends.net/states/california/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Chart and table of population level and growth rate for the state of California from 1900 to 2024.

  14. a

    ChangeSince2010 SPARCC ACS2019

    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    Updated Sep 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). ChangeSince2010 SPARCC ACS2019 [Dataset]. https://fultoncountyopendata-fulcogis.opendata.arcgis.com/maps/GARC::changesince2010-sparcc-acs2019-1
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. For further explanation of ACS estimates and margin of error, visit Census ACS website.

  15. a

    Age 2016

    • opendata.atlantaregional.com
    Updated Jan 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2018). Age 2016 [Dataset]. https://opendata.atlantaregional.com/datasets/age-2016/api
    Explore at:
    Dataset updated
    Jan 10, 2018
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2012-2016, to show population by age group and change data, by census tract in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2012-2016). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, click here.Attributes: GEOID10 = 2010 Census tract identifier (combination of Federal Information Processing Series (FIPS) codes for state, county, and census tract) County = County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county) Area_Name = 2010 Census tract name- - - - - -Total_Population = # Total Population, 2016 Total_Population_MOE_2016 = # Total population (Margin of Error), 2016- - - - - -Pct_Pop_und_age_5_2016 = % Population under age 5, 2016 Pct_Pop_und_age_5_2000 = % Population under age 5, 2000 ChgPct_Pop_und_age_5_2000_16 = Change, % Population under age 5, 2000-2016 Pct_Pop_und_18_2000 = % Population under age 18, 2000 Pct_Pop_und_18_2016 = % Population under age 18, 2016 Pct_Pop_und_18_MOE_2016 = % Population under age 18 (Margin of Error), 2016 ChgPct_Pop_und_18_2000_16 = Change, % Population under age 18, 2000-2016 Pct_Pop_ages_18_34_2000 = % Population ages 18-34, 2000 Pct_Pop_ages_18_34_2016 = % Population ages 18-34, 2016 Pct_Pop_ages_18_34_MOE_2016 = % Population ages 18-34 (Margin of Error), 2016 ChgPct_Pop_ages_18_34_2000_16 = Change, % Population ages 18-34, 2000-2016 Pct_Pop_ages_35_49_2000 = % Population ages 35-49, 2000 Pct_Pop_ages_35_49_2016 = % Population ages 35-49, 2016 Pct_Pop_ages_35_49_MOE_2016 = % Population ages 35-49 (Margin of Error), 2016 ChgPct_Pop_ages_35_49_2000_16 = Change, % Population ages 35-49, 2000-2016 Pct_Pop_ages_50_64_2000 = % Population ages 50-64, 2000 Pct_Pop_ages_50_64_2016 = % Population ages 50-64, 2016 Pct_Pop_ages_50_64_MOE_2016 = % Population ages 50-64 (Margin of Error), 2016 ChgPct_Pop_ages_50_64_2000_16 = Change, % Population ages 50-64, 2000-2016 Pct_Pop_ages_65over_2000 = % Population ages 65 and over, 2000 Pct_Pop_ages_65over_2016 = % Population ages 65 and over, 2016 Pct_Pop_ages_65over_MOE_2016 = % Population ages 65 and over (Margin of Error), 2016 ChgPct_Pop_ages_65over_2000_16 = Change, % Population ages 65 and over, 2000-2016- - - - - -Planning_Region = Planning region designation for ARC purposes AcresLand = Land area within the tract (in acres) AcresWater = Water area within the tract (in acres) AcresTotal = Total area within the tract (in acres) SqMi_Land = Land area within the tract (in square miles) SqMi_Water = Water area within the tract (in square miles) SqMi_Total = Total area within the tract (in square miles) TRACTCE10 = Census tract Federal Information Processing Series (FIPS) code. Census tracts are identified by an up to four-digit integer number and may have an optional two-digit suffix; for example 1457.02 or 23. The census tract codes consist of six digits with an implied decimal between the fourth and fifth digit corresponding to the basic census tract number but with leading zeroes and trailing zeroes for census tracts without a suffix. The tract number examples above would have codes of 145702 and 002300, respectively. CountyName = County Name last_edited_date = Last date the feature was edited by ARCSource: U.S. Census Bureau, Atlanta Regional CommissionDate: 2012-2016

    For additional information, please visit the Atlanta Regional Commission at www.atlantaregional.com.

  16. Population Projections for Napa County

    • data.countyofnapa.org
    application/rdfxml +5
    Updated Aug 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2023). Population Projections for Napa County [Dataset]. https://data.countyofnapa.org/w/sjku-zj9t/default?cur=5lvCEgbTfgE&from=i57KEYaw4ON
    Explore at:
    json, csv, xml, application/rssxml, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Aug 10, 2023
    Dataset authored and provided by
    California Department of Financehttps://dof.ca.gov/
    Area covered
    Napa County
    Description

    Data Source: CA Department of Finance, Demographic Research Unit

    Report P-3: Population Projections, California, 2010-2060 (Baseline 2019 Population Projections; Vintage 2020 Release). Sacramento: California. July 2021.

    This data biography shares the how, who, what, where, when, and why about this dataset. We, the epidemiology team at Napa County Health and Human Services Agency, Public Health Division, created it to help you understand where the data we analyze and share comes from. If you have any further questions, we can be reached at epidemiology@countyofnapa.org.

    Data dashboard featuring this data: Napa County Demographics https://data.countyofnapa.org/stories/s/bu3n-fytj

    How was the data collected? Population projections use the following demographic balancing equation: Current Population = Previous Population + (Births - Deaths) +Net Migration

    Previous Population: the starting point for the population projection estimates is the 2020 US Census, informed by the Population Estimates Program data.

    Births and Deaths: birth and death totals came from the California Department of Public Health, Vital Statistics Branch, which maintains birth and death records for California.

    Net Migration: multiple sources of administrative records were used to estimate net migration, including driver’s license address changes, IRS tax return data, Medicare and Medi-Cal enrollment, federal immigration reports, elementary school enrollments, and group quarters population.

    Who was included and excluded from the data? Previous Population: The goal of the US Census is to reflect all populations residing in a given geographic area. Results of two analyses done by the US Census Bureau showed that the 2020 Census total population counts were consistent with recent counts despite the challenges added by the pandemic. However, some populations were undercounted (the Black or African American population, the American Indian or Alaska Native population living on a reservation, the Hispanic or Latino population, and people who reported being of Some Other Race), and some were overcounted (the Non-Hispanic White population and the Asian population). Children, especially children younger than 4, were also undercounted.

    Births and Deaths: Birth records include all people who are born in California as well as births to California residents that happened out of state. Death records include people who died while in California, as well as deaths of California residents that occurred out of state. Because birth and death record data comes from a registration process, the demographic information provided may not be accurate or complete.

    Net Migration: each of the multiple sources of administrative records that were used to estimate net migration include and exclude different groups. For details about methodology, see https://dof.ca.gov/wp-content/uploads/sites/352/2023/07/Projections_Methodology.pdf.

    Where was the data collected?  Data is collected throughout California. This subset of data includes Napa County.

    When was the data collected? This subset of Napa County data is from Report P-3: Population Projections, California, 2010-2060 (Baseline 2019 Population Projections; Vintage 2020 Release). Sacramento: California. July 2021.

    These 2019 baseline projections incorporate the latest historical population, birth, death, and migration data available as of July 1, 2020. Historical trends from 1990 through 2020 for births, deaths, and migration are examined. County populations by age, sex, and race/ethnicity are projected to 2060.

    Why was the data collected?  The population projections were prepared under the mandate of the California Government Code (Cal. Gov't Code § 13073, 13073.5).

    Where can I learn more about this data? https://dof.ca.gov/Forecasting/Demographics/Projections/ https://dof.ca.gov/wp-content/uploads/sites/352/Forecasting/Demographics/Documents/P3_Dictionary.txt https://dof.ca.gov/wp-content/uploads/sites/352/2023/07/Projections_Methodology.pdf

  17. a

    ChangeSince2000 ARC20 ACS2019

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • opendata.atlantaregional.com
    • +3more
    Updated Sep 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). ChangeSince2000 ARC20 ACS2019 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/88c527e3da8a4636a3b43244eb4d7f02
    Explore at:
    Dataset updated
    Sep 17, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau to show population change from 2000 to2019. It shows the population change from 2000 to2019 by ARC 20 County. This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimated value is expressed as a number, then its MOE will also be a number; if the estimated value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent anyone specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes, and so forth for all metrics.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e18

    Estimate from 2015-19 ACS

    _m19

    Margin of Error from 2015-19 ACS

    _00_v19

    Decennial 2000 in 2019 geography boundary

    _00_19

    Change, 2000-19

    _e10_v19

    Estimate from 2006-10 ACS in 2019 geography boundary

    _m10_v19

    Margin of Error from 2006-10 ACS in 2019 geography boundary

    _e10_19

    Change, 2010-19

  18. K

    US Communities

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Federal Emergency Management Agency (FEMA) (2018). US Communities [Dataset]. https://koordinates.com/layer/25566-us-communities/
    Explore at:
    mapinfo mif, csv, mapinfo tab, pdf, shapefile, dwg, kml, geopackage / sqlite, geodatabaseAvailable download formats
    Dataset updated
    Sep 3, 2018
    Dataset authored and provided by
    US Federal Emergency Management Agency (FEMA)
    Area covered
    Description

    The Census data utilized for developing the Community Layer used 2010 TIGER/Line shapefile datasets (TIGER = Topologically Integrated Geographic Encoding and Referencing). TIGER/Line shapefiles are available for free download from the US Census Bureau and include various legal and statistical geographic areas for which the Census tabulates data. The shapefiles are designed to be used in a GIS environment, with the ability to directly link the geographic areas to Census data via a unique GEOID number.The following TIGER/Line datasets should be used: - Counties and Equivalent Entities –primary legal divisions within each state (counties, parishes, etc)- County Subdivisions –includes both legal areas (Minor Civil Divisions or MCDs) and various statistical areas- Places –includes both legal areas (Incorporated Places) and statistical areas (Census Designated Places or CDPs)- Blocks –the smallest geographical area for which Census population counts are recorded; blocks never cross boundaries of any entity for which the Census Bureau tabulates data, including counties, county subdivisions, places, and American Indian, Alaska Native, and Native Hawaiian (AIANNH) areas- American Indian, Alaska Native, and Native Hawaiian (AIANNH) AreasExtracting and Formatting CIS DataA key component of the community layer is the ability to link CIS information spatially. Data from CIS cannot directly be joined with Census data. The two datasets have community name discrepancies which impede an exact match. Therefore, CIS data needs to be formatted to match Census community names. A custom report can be obtained from CIS to include a CID number, Community Name, County, State, Community Status, and Tribal status for all CIS records. Make sure all CID numbers are six digits and you follow the CIS community naming convention outlined in Table 4.2.1.1 in the Community Layer Update Technical Guide 20131206. Converting the CIS name“ADDISON, VILLAGE OF” to “ADDISON TOWN”involves removing unneeded spaces, comma, and preposition to make the join successful to the Census data. Using a comprehensive report at a national level gains efficiencies as bulk edits can be made. Data for each state should be extracted as needed by separating the CIS data into each type of community corresponding to the Census geography layers used, and a new JoinID column (e.g. ADDISON TOWN) can be created for each dataset allowing the CIS data to be joined to the Census data.

  19. Las Vegas-Henderson-Paradise metro area population U.S. 2010-2023

    • statista.com
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Las Vegas-Henderson-Paradise metro area population U.S. 2010-2023 [Dataset]. https://www.statista.com/statistics/815518/las-vegas-metro-area-population/
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the population of the Las Vegas-Henderson-North Las Vegas metropolitan area was about 2.33 million people. This was a slight increase from the previous year, when the population was 2.32 million people.

  20. f

    Change 2010 - 2019 (by ARC 20 County) 2019

    • gisdata.fultoncountyga.gov
    • hub.arcgis.com
    • +1more
    Updated Mar 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Change 2010 - 2019 (by ARC 20 County) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::change-2010-2019-by-arc-20-county-2019/about
    Explore at:
    Dataset updated
    Mar 1, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Population of the United States 1610-2020 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
Organization logo

Population of the United States 1610-2020

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 12, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).

Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.

Search
Clear search
Close search
Google apps
Main menu