82 datasets found
  1. Annual precipitation volume in the United States 1900-2024

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual precipitation volume in the United States 1900-2024 [Dataset]. https://www.statista.com/statistics/504400/volume-of-precipitation-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.

  2. Historical and future precipitation trends (Map Service)

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • agdatacommons.nal.usda.gov
    • +7more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future precipitation trends (Map Service) [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/historical-and-future-precipitation-trends-map-service-f7d6d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://res1journalsd-o-tametsocd-o-torg.vcapture.xyz/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://res1rmetsd-o-tonlinelibraryd-o-twileyd-o-tcom.vcapture.xyz/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://res1climated-o-tnorthwestknowledged-o-tnet.vcapture.xyz/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://res1climated-o-tnorthwestknowledged-o-tnet.vcapture.xyz/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://res1wwwd-o-tfsd-o-tusdad-o-tgov.vcapture.xyz/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://res1wwwd-o-tfsd-o-tusdad-o-tgov.vcapture.xyz/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  3. U.S. Hourly Precipitation Data

    • ncei.noaa.gov
    • data.globalchange.gov
    • +6more
    csv, dat, kmz
    Updated Oct 1951
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (NCEI) (1951). U.S. Hourly Precipitation Data [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00313
    Explore at:
    csv, dat, kmzAvailable download formats
    Dataset updated
    Oct 1951
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Time period covered
    Jan 1, 1940 - Dec 31, 2013
    Area covered
    Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Guam, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Palau, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Virgin Islands, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Marshall Islands, Geographic Region > Mid-Latitude, Ocean > Pacific Ocean > Central Pacific Ocean > American Samoa, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Puerto Rico, Geographic Region > Equatorial, Geographic Region > Polar, United States
    Description

    Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.

  4. Data from: Climate Prediction Center(CPC) Monthly U.S. Precipitation and...

    • data.cnra.ca.gov
    • data.wu.ac.at
    txt
    Updated Mar 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2023). Climate Prediction Center(CPC) Monthly U.S. Precipitation and Temperature Summary [Dataset]. https://data.cnra.ca.gov/dataset/climate-prediction-centercpc-monthly-u-s-precipitation-and-temperature-summary
    Explore at:
    txtAvailable download formats
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    Monthly U.S. minimum and maximum temperatures in whole degrees Fahrenheit and reported and estimated precipitation amounts in hundredths of inches(ex 100 is 1.00 inches) generated from the Global Telecommunications System (GTS) metar(hourly) and synoptic(6-hourly)observations

  5. U.S. Monthly Gridded Precipitation and Temperature Climate Normals for...

    • datasets.ai
    • catalog.data.gov
    0
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce, U.S. Monthly Gridded Precipitation and Temperature Climate Normals for 1991-2020 (NCEI Accession 0245564) [Dataset]. https://datasets.ai/datasets/u-s-monthly-gridded-precipitation-and-temperature-climate-normals-for-1991-2020-ncei-accession-
    Explore at:
    0Available download formats
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    National Oceanic and Atmospheric Administration, Department of Commerce
    Area covered
    United States
    Description

    A 1/24 degree by 1/24 degree (~5 km) gridded data set consisting of monthly precipitation and temperature values for the conterminous U.S. was published as part of generating new division climate normals. The underlying data set is nClimGrid, and this is based on a set of station anomalies observed in any given month interpolated spatially using climate guidance and reconstructed into whole values. The resulting monthly grids are the equivalent of homogenous temperature and serially complete precipitation records. Therefore, a simple 30-year average of monthly grids from 1991-2020 yields directly a set of gridded climate normals. Monthly gridded climate normals are calculated for total precipitation, and maximum, minimum and average temperature.

  6. Climate.gov Data Snapshots: Precipitation - Monthly Percent of Average

    • datalumos.org
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Precipitation - Monthly Percent of Average [Dataset]. http://doi.org/10.3886/E233226V2
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: Was the month drier or wetter than usual? A: Colors show where and by how much monthly precipitation totals differed from average precipitation for the same month from 1991-2020. Green areas were wetter than the 30-year average for the month and brown areas were drier. White and very light areas had monthly precipitation totals close to the long-term average. Q: Where do these measurements come from? A: Daily measurements of rain and snow come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments gather the data and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly total and plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). To calculate the percent of average precipitation values shown on these maps—also called precipitation anomalies—NCEI scientists take the total precipitation in each 5x5 km grid box for a single month and year, and divide it by its 1991-2020 average for the same month. Multiplying that number by 100 yields a percent of average precipitation. If the result is greater than 100%, the region was wetter than average. Less than 100% means the region was drier than usual. Q: What do the colors mean? A: Shades of brown show places where total precipitation was below the long-term average for the month. Areas shown in shades of green had more liquid water from rain and/or snow than they averaged from 1991 to 2020. The darker the shade of brown or green, the larger the difference from the average precipitation. White and very light areas show where precipitation totals were the same as or very close to the long-term average. Note that snowfall totals are reported as the amount of liquid water they produce upon melting. Thus, a 10-inch snowfall that melts to produce one inch of liquid water would be counted as one inch of precipitation. Q: Why do these data matter? A: Comparing an area’s recent precipitation to its long-term average can tell how wet or how dry the area is compared to usual. Knowing if an area is much drier or much wetter than usual can encourage people to pay close attention to on-the-ground conditions that affect daily life and decisions. People check maps like this to judge crop progress; monitor reservoir levels; consider if lawns and landscaping need water; and to understand the possibilities of flooding. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products; to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on climate data (NClimGrid) produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Total Precipitation NClimGrid Precipitation Normals References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions NCEI Monthly National Analysis Climate at a Glance - Data Information NCEI Climate Monitoring - All ProductsSource: https://www.climate.gov/maps-data/

  7. d

    Precipitation - Historic Monthly Time Series

    • catalog.data.gov
    • data.oregon.gov
    • +3more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2025). Precipitation - Historic Monthly Time Series [Dataset]. https://catalog.data.gov/dataset/precipitation-historic-monthly-time-series
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    State of Oregon
    Description

    Historical Past (1895-1980) - Time series datasets prior to 1981 are modeled using climatologically-aided interpolation (CAI), which uses the long-term average pattern (i.e., the 30-year normals) as first-guess of the spatial pattern of climatic conditions for a given month or day. CAI is robust to wide variations in station data density, which is necessary when modeling long time series. Data is based on Monthly and Annual dataset covering the conterminous U.S. from 1981 to now. Contains spatially gridded monthly and annual total precipitation at 4km grid cell resolution. Distribution of the point measurements to the spatial grid was accomplished using the PRISM model, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University.

  8. Climate Prediction Center (CPC) Monthly U.S. Selected Cities Precipitation...

    • data.cnra.ca.gov
    • data.globalchange.gov
    • +2more
    txt
    Updated Mar 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2023). Climate Prediction Center (CPC) Monthly U.S. Selected Cities Precipitation Summary [Dataset]. https://data.cnra.ca.gov/dataset/climate-prediction-center-cpc-monthly-u-s-selected-cities-precipitation-summary
    Explore at:
    txtAvailable download formats
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    Monthly U.S. reported precipitation amounts in hundredths of inches (ex 100 is 1.00 inches) generated from the GTS metar(hourly) and synoptic(6-hourly)observations for selected cities based on the Weekly Weather and Crop Bulletin station list

  9. c

    Historical changes of annual temperature and precipitation indices at...

    • kilthub.cmu.edu
    txt
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuchuan Lai; David Dzombak (2024). Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities [Dataset]. http://doi.org/10.1184/R1/7961012.v6
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Carnegie Mellon University
    Authors
    Yuchuan Lai; David Dzombak
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities

    This dataset provide:

    Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.

    Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.

    Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.

    Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.

    Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.

    Number of missing daily Tmax, Tmin, and precipitation values are included for each city.

    Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.

    The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).

    Resources:

    See included README file for more information.

    Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1

    Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538

    ACIS database for historical observations: http://scacis.rcc-acis.org/

    GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/

    Station information for each city can be accessed at: http://threadex.rcc-acis.org/

    • 2024 August updated -

      Annual calculations for 2022 and 2023 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.

      Note that future updates may be infrequent.

    • 2022 January updated -

      Annual calculations for 2021 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.

    • 2021 January updated -

      Annual calculations for 2020 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.

    • 2020 January updated -

      Annual calculations for 2019 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.

      Thresholds for all 210 cities were combined into one single file – Thresholds.csv.

    • 2019 June updated -

      Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.

      README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).

  10. T

    United States Average Precipitation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Average Precipitation [Dataset]. https://tradingeconomics.com/united-states/precipitation
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2024
    Area covered
    United States
    Description

    Precipitation in the United States increased to 777.25 mm in 2024 from 738.01 mm in 2023. This dataset includes a chart with historical data for the United States Average Precipitation.

  11. Annual precipitation in the United States 2024, by state

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual precipitation in the United States 2024, by state [Dataset]. https://www.statista.com/statistics/1101518/annual-precipitation-by-us-state/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, Louisiana recorded ***** inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only **** inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of **** inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.

  12. U.S. Annual Climatological Summaries

    • ncei.noaa.gov
    • data.globalchange.gov
    • +1more
    csv, dat, kmz, pdf
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce (2023). U.S. Annual Climatological Summaries [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00040
    Explore at:
    csv, kmz, pdf, datAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Authors
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Time period covered
    Jan 1, 1831 - Present
    Area covered
    Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Palau, Ocean > Pacific Ocean > Central Pacific Ocean > Wake Island, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Puerto Rico, Ocean > Pacific Ocean > Central Pacific Ocean > Hawaiian Islands, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Virgin Islands, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Guam, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Marshall Islands, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Northern Mariana Islands, geographic bounding box, United States
    Description

    Annual Climatological Summary contains historical monthly and annual summaries for over 8000 U.S. locations. Observing stations are located in the United States of America, U.S. Virgin Islands, Puerto Rico, and Pacific islands of the U.S. and associated nations. The major parameters are: monthly mean maximum, mean minimum and mean temperatures; monthly total precipitation and snowfall; departure from normal of the mean temperature and total precipitation; monthly heating and cooling degree days; number of days that temperatures and precipitation are above or below certain thresholds; and extreme daily temperature and precipitation amounts. Annual Climatological Summary is derived from the NCDC Summary of the Month dataset (DSI-3220).

  13. e

    North America Monthly Precipitation

    • climat.esri.ca
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Monthly Precipitation [Dataset]. https://climat.esri.ca/maps/5f1fa8a610024e55a0bddc66bf6ebd76
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to the standard Lambert Azimuthal Equal Area projection used for the North American Environmental Atlas. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  14. Historical winter precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • datasets.ai
    • +6more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical winter precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-winter-precipitation-conus-image-service-79292
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  15. Climate.gov Data Snapshots: Temperature - US Monthly, Difference from...

    • datalumos.org
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - US Monthly, Difference from Average [Dataset]. http://doi.org/10.3886/E233741V1
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: Was the month cooler or warmer than usual? A: Colors show where and by how much the monthly average temperature differed from the month’s long-term average temperature from 1991-2020. Red areas were warmer than the 30-year average for the month, and blue areas were cooler. White and very light areas had temperatures close to the long-term average. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). To calculate the difference-from-average temperatures shown on these maps—also called temperature anomalies—NCEI scientists take the average temperature in each 5x5 km grid box for a single month and year, and subtract its 1991-2020 average for the same month. If the result is a positive number, the region was warmer than average. A negative result means the region was cooler than usual. Q: What do the colors mean? A: Shades of blue show places where average monthly temperatures were below their long-term average for the month. Areas shown in shades of pink to red had average temperatures that were warmer than usual. The darker the shade of red or blue, the larger the difference from the long-term average temperature. White and very light areas show where average monthly temperature was the same as or very close to the long-term average. Q: Why do these data matter? A: Comparing an area’s recent temperature to its long-term average can tell how warm or how cool the area is compared to usual. Temperature anomalies also give us a frame of reference to better compare locations. For example, two areas might have each had recent temperatures near 70°F, but 70°F could be above average for one location while below average for another. Knowing an area is much warmer or much cooler than usual can encourage people to pay close attention to on-the-ground conditions that affect daily life and decisions. People check maps like this to judge crop progress, estimate energy use, consider snow and lake ice melt; and to understand impacts on wildfire regimes. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Q: Data Format Description A: NetCDF (Version: 4) Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature NClimGrid Temperature Normals References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions NCEI Monthly National Analysis Cl

  16. Data from: Monthly Total Precipitation Observation for Climate Prediction...

    • data.cnra.ca.gov
    • datadiscoverystudio.org
    • +1more
    dat, html
    Updated Mar 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2023). Monthly Total Precipitation Observation for Climate Prediction Center (CPC)Forecast Divisions [Dataset]. https://data.cnra.ca.gov/dataset/monthly-total-precipitation-observation-for-climate-prediction-center-cpcforecast-divisions
    Explore at:
    html, datAvailable download formats
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    This ASCII dataset contains monthly total precipitation for 102 Forecast Divisions within the conterminous U.S. It is derived from the monthly NCDC climate division data. These data are from daily reports from cooperative observers as well as first order stations. The CPC forecast division data combine NCDC climate divisions to yield regions of approximately equal area throughout the conterminous U.S. Data represent the approximate area average total monthly precipitation within each forecast division.

  17. NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid)

    • catalog.data.gov
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) [Dataset]. https://catalog.data.gov/dataset/noaa-monthly-u-s-climate-gridded-dataset-nclimgrid2
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. On an annual basis, approximately one year of "final" nClimGrid will be submitted to replace the initially supplied "preliminary" data for the same time period. Users should be sure to ascertain which level of data is required for their research.

  18. o

    Long-Term Daily and Monthly Climate Records from Stations Across the...

    • osti.gov
    • data.ess-dive.lbl.gov
    • +3more
    Updated Dec 31, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDIAC (2015). Long-Term Daily and Monthly Climate Records from Stations Across the Contiguous United States (U.S. Historical Climatology Network) [Dataset]. http://doi.org/10.3334/CDIAC/CLI.NDP019
    Explore at:
    Dataset updated
    Dec 31, 2015
    Dataset provided by
    CDIAC
    Environmental System Science Data Infrastructure for a Virtual Ecosystem
    Area covered
    Contiguous United States, United States
    Description

    The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and monthly records of basic meteorological variables from 1218 observing stations across the 48 contiguous United States. Daily data include observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations are U.S. Cooperative Observing Network stations located generally in rural locations, while some are National Weather Service First-Order stations that are often located in more urbanized environments. The USHCN has been developed over the years at the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) to assist in the detection of regional climate change. Furthermore, it has been widely used in analyzing U.S. climte. The period of record varies for each station. USHCN stations were chosen using a number of criteria including length of record, percent of missing data, number of station moves and other station changes that may affect data homogeneity, and resulting network spatial coverage. Collaboration between NCDC and CDIAC on the USHCN project dates to the 1980s (Quinlan et al. 1987). At that time, in response to the need for an accurate, unbiased, modern historical climate record for the United States, the Global Change Research Program of the U.S. Department of Energy and NCDC chose a network of 1219 stations in the contiguous United States that would become a key baseline data set for monitoring U.S. climate. This initial USHCN data set contained monthly data and was made available free of charge from CDIAC. Since then it has been comprehensively updated several times [e.g., Karl et al. (1990) and Easterling et al. (1996)]. The initial USHCN daily data set was made available through CDIAC via Hughes et al. (1992) and contained a 138-station subset of the USHCN. This product was updated by Easterling et al. (1999) and expanded to include 1062 stations. In 2009 the daily USHCN dataset was expanded to include all 1218 stations in the USHCN.

  19. NOAA U.S. Climate Normals

    • registry.opendata.aws
    Updated Aug 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA (2021). NOAA U.S. Climate Normals [Dataset]. https://registry.opendata.aws/noaa-climate-normals/
    Explore at:
    Dataset updated
    Aug 11, 2021
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Climate Normals are a large suite of data products that provide information about typical climate conditions for thousands of locations across the United States. Normals act both as a ruler to compare today’s weather and tomorrow’s forecast, and as a predictor of conditions in the near future. The official normals are calculated for a uniform 30 year period, and consist of annual/seasonal, monthly, daily, and hourly averages and statistics of temperature, precipitation, and other climatological variables from almost 15,000 U.S. weather stations.

    NCEI generates the official U.S. normals every 10 years in keeping with the needs of our user community and the requirements of the World Meteorological Organization (WMO) and National Weather Service (NWS). The 1991–2020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. These data allow travelers to pack the right clothes, farmers to plant the best crop varieties, and utilities to plan for seasonal energy usage. Many other important economic decisions that are made beyond the predictive range of standard weather forecasts are either based on or influenced by climate normals.

  20. Monthly average temperature in the United States 2020-2024

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Annual precipitation volume in the United States 1900-2024 [Dataset]. https://www.statista.com/statistics/504400/volume-of-precipitation-in-the-us/
Organization logo

Annual precipitation volume in the United States 1900-2024

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 10, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.

Search
Clear search
Close search
Google apps
Main menu