Provides regional identifiers for county based regions of various types. These can be combined with other datasets for visualization, mapping, analyses, and aggregation. These regions include:Metropolitan Statistical Areas (Current): MSAs as defined by US OMB in 2023Metropolitan Statistical Areas (2010s): MSAs as defined by US OMB in 2013Metropolitan Statistical Areas (2000s): MSAs as defined by US OMB in 2003Region: Three broad regions in North Carolina (Eastern, Western, Central)Council of GovernmentsProsperity Zones: NC Department of Commerce Prosperity ZonesNCDOT Divisions: NC Dept. of Transportation DivisionsNCDOT Districts (within Divisions)Metro Regions: Identifies Triangle, Triad, Charlotte, All Other Metros, & Non-MetropolitanUrban/Rural defined by:NC Rural Center (Urban, Regional/Suburban, Rural) - 2020 Census designations2010 Census (Urban = Counties with 50% or more population living in urban areas in 2010)2010 Census Urbanized (Urban = Counties with 50% or more of the population living in urbanized areas in 2010 (50,000+ sized urban area))Municipal Population - State Demographer (Urban = counties with 50% or more of the population living in a municipality as of July 1, 2019)Isserman Urban-Rural Density Typology
This map is for use in the Intermountain Region Website.
Regional geophysical maps of the Great Basin, USA were generated from new and existing sources to support ongoing efforts to characterize geothermal resource potential in the western US. These include: (1) a provisional regional gravity grid that was produced from data compiled from multiple sources: data collected by the USGS and Utah Geological Survey under various projects, industry sources, and regional compilations derived from two sources: a Nevada state-wide database (Ponce, 1997), and a public domain dataset (Hildenbrand et al., 2002), (2) a regional magnetic grid derived from the North American magnetic compilation map of Bankey et al. (2002) and, (3) a regional depth-to-basement grid derived from Shaw and Boyd (2018). References: Bankey, V., Cuevas, A., Daniels, D., Finn, C.A., Hernandez, I., Hill, P., Kucks, R., Miles, W., Pilkington, M., Roberts, C., Roest, W., Rystrom, V., Shearer, S., Snyder, S., Sweeney, R.E., Velez, J., Phillips, J.D., and Ravat, D.K.A., 2002, Digital data grids for the magnetic anomaly map of North America, U.S. Geological Survey, Open-File Report 2002-414, https://doi.org/10.3133/ofr02414. Hildenbrand, T.G., Briesacher, A., Flanagan, G., Hinze, W.J., Hittelman, A.M., Keller, G.R., Kucks, R.P., Plouff, D., Roest, W., Seeley, J., Smith, D.A., and Webring, M., 2002, Rationale and operational plan to upgrade the U.S. Gravity Database: U.S. Geological Survey Open-File Report 02-463, 12p. [https://pubs.er.usgs.gov/publication/ofr0246; data downloaded from the Pan-American Center for Earth and Environmental Studies (PACES) gravity database in October 2007 from URL http://paces.geo.utep.edu/research/gravmag/gravmag.shtml]. Ponce, D.A., 1997, Gravity data of Nevada, U.S. Geological Survey Digital Data Series DDS-42. https://pubs.usgs.gov/dds/dds-42/. Shah, A.K, and Boyd, O.S., 2018, Depth to basement and thickness of unconsolidated sediments for the western United States—Initial estimates for layers of the U.S. Geological Survey National Crustal Model: U.S. Geological Survey Open-File Report 2018–1115, 13 p., https://doi.org/10.3133/ofr20181115.
Official NWS Advanced Weather Interactive Processing System (AWIPS) background US State and Territory designations.
https://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Interactive Map Of The Us Regions technology, compiled through global website indexing conducted by WebTechSurvey.
This layer is a component of ENOW_Counties.
This map service presents spatial information about the Economics: National Ocean Watch (ENOW) data in the Web Mercator projection. The ENOW data provides time-series data on the ocean and Great Lakes economy, which includes six economic sectors dependent on the oceans and Great Lakes, and measures four economic indicators: Establishments, Employment, Wages, and Gross Domestic Product (GDP). The annual time-series data are available for about 400 coastal counties, 30 coastal states, 8 regions, and the nation. The service was developed by the National Oceanic and Atmospheric Administration (NOAA), but may contain data and information from a variety of data sources, including non-NOAA data. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© NOAA Office for Coastal Management
JAWCF/maps dataset hosted on Hugging Face and contributed by the HF Datasets community
This data set delineates the boundaries of the U.S. Fish and Wildlife Service geographic Regions. The dataset was created as a geographic representation of the Regional administrative boundaries of the US Fish and Wildlife Service at a very coarse scale. The boundaries were created using the ArcGIS shoreline dataset from approximately 1995. This dataset should not be used for legal purposes or at small scales and does not accurately denote the shorelines of the united states. The Regional Boundaries data set is managed by the FWS Headquarters Information Resources and Technology Management, Branch of Geospatial Data Management. The complete data and metadata can be accessed here: https://catalog.data.gov/dataset/us-fish-and-wildlife-service-regional-boundaries. This data set is a graphical representation and has limitations of accuracy as determined by, among others, the source, scale and resolution of the data. DOI Interior Regions / Regional Boundaries (https://fws.maps.arcgis.com/home/item.html?id=309aa728d6c041ceaefc1526a409b5d1).
https://choosealicense.com/licenses/bsd/https://choosealicense.com/licenses/bsd/
ukcp-dg/maps dataset hosted on Hugging Face and contributed by the HF Datasets community
These maps were developed to support an effort to understand the spatial characteristics of piping plover (Charadrius melodus) nesting habitats. The maps show the expected nesting habitat distributions and piping plover intensity between 2000 and 2021 in the U.S. Prairie Pothole Region.
A map service depicting Forest Service existing vegetation polygons for Region 5.This Existing Vegetation (EVeg) polygon feature class is a CALVEG (Classification and Assessment with LANDSAT of Visible Ecological Groupings) map product from a scale of 1:24,000 to 1:100,000. The geographic extent entails the northeastern portion of CALVEG Zone 6, Central Coast. Source imagery for this layer ranges from the year 1998 to 2015. The CALVEG classification system was used for vegetation typing and crosswalked to other classification systems in this database including the California Wildlife Habitat Relationship System (CWHR).Metadata and Downloads
FAF domestic region level datasets and products provide information for states, state portions of large metropolitan areas, and remainders of states. Metropolitan areas consist of Metropolitan Statistical Areas or Consolidated Statistical Areas as defined by the Office of Management and Budget. When a metropolitan area is entirely within a state or when a state's portion of a multi-state metropolitan area is large enough to support the sampling procedures in the Commodity Flow Survey, the area becomes a separate FAF region. Small single-state metropolitan areas and small portions of a multi-state metropolitan area are part of the State or Remainder of State. FAF has two metropolitan areas that are each divided into three FAF regions, four that are each divided into two FAF regions, and several that have small pieces combined with States or Remainders of States.
© United States Department of Transportation, Federal Highway Administration. For more information, see the site http://www.ops.fhwa.dot.gov/freight/freight_analysis/faf/faf3/userguide/index.htm This layer is sourced from maps.bts.dot.gov.
The spatial component of the FAF network is derived from National Highway System Version 2009.11 and contains state primary and secondary roads, National Highway System (NHS), National Network (NN) and several intermodal connectors as appropriate for the freight network modeling. The network consists of over 447,808 miles of equivalent road mileage. The data set covers the 48 contiguous States plus the District of Columbia, Alaska, and Hawaii. The nominal scale of the data set is 1:100,000 with a maximal positional error of ±80 meters.
© ederal Highway Administration Office of Freight Management and Operations and the Battelle Memorial Institute, Columbus, OH
Conservation planning in the Great Plains often depends on understanding the degree of fragmentation of the various types of grasslands and savannas that historically occurred in this region. To define ecological subregions of the Great Plains, we used a revised version of Kuchler’s (1964) map of the potential natural vegetation of the United States. The map was digitized from the 1979 physiographic regions map produced by the Bureau of Land Management, which added 10 physiognomic types. All analyses are based on data sources specific to the United States; hence, we only analyze the portion of the Great Plains occurring in the United States.We sought to quantify the current amount of rangeland in the US Great Plains converted due to 1) woody plant encroachment; 2) urban, exurban, and other forms of development (e.g., energy infrastructure); and 3) cultivation of cropland. At the time of this analysis, the most contemporary measure of land cover across the United States was the 2011 NLCD (Homer et al. 2015). One limitation of the NLCD is that some grasslands with high rates of productivity, such as herbaceous wetlands or grasslands along riparian zones, are misclassified as cropland. A second limitation is the inability to capture cropland conversion occurring after 2011 (Lark et al. 2015). Beginning in 2009 (and retroactively for 2008), the US Department of Agriculture - NASS has annually produced a Cropland Data Layer (CDL) for the United States from satellite imagery, which maps individual crop types at a 30-m spatial resolution. We used the annual CDLs from 2011 to 2017 to map the distribution of cropland in the Great Plains. We merged this map with the 2011 NLCD to evaluate the degree of fragmentation of grasslands and savannas in the Great Plains as a result of conversion to urban land, cropland, or woodland. We produced two maps of fragmentation (best case and worst case scenarios) that quantify this fragmentation at a 30 x 30 m pixel resolution across the US Great Plains, and make them available for download here. Resources in this dataset: Resource title: Data Dictionary for Figure 2 derived land cover of the US portion of the North American Great Plains File name: Figure2_Key for landcover classes.csv Resource title: Figure 1. Potential natural vegetation of US portion of the North American Great Plains, adapted from Kuchler (1964). File name: Figure1_Kuchler_GPRangelands.zip Resource description: Extracted grassland, shrubland, savanna, and forest communities in the US Great Plains from the revised Kuchler natural vegetation map Resource title: Figure 2. Derived land cover of the US portion of the North American Great Plains. File name: Figure2_Key for landcover classes.zip Resource description: The fNLCD-CDL product estimates that 43.7% of the Great Plains still consists of grasslands and shrublands, with the remainder consisting of 40.6% cropland, 4.4% forests, 3.0% UGC, 3.0% developed open space, 2.9% improved pasture or hay fields, 1.2% developed land, 1.0% water, and 0.2% barren land, with important regional and subregional variation in the extent of rangeland loss to cropland, forests, and developed land. Resource title: Figure 3. Variation in the degree of fragmentation of Great Plains measured in terms of distance to cropland, forest, or developed lands. File name: Figure3_bestcase_disttofrag.zip Resource description: This map depicts a “best case” scenario in which 1) croplands are mapped based only on the US Department of AgricultureNational Agricultural Statistics Service Cropland Data Layers (2011e2017), 2) all grass-dominated cover types including hay fields and improved pasture are considered rangelands, and 3) developed open space (as defined by the National Land Cover Database) are assumed to not be a fragmenting land cover type. Resource title: Figure 4. Variation in the degree of fragmentation of Great Plains measured in terms of distances to cropland, forest, or developed lands. File name: Figure4_worstcase_disttofrag.zip Resource description: This map depicts a ‘worst case’ scenario in which 1) croplands are mapped based on the US Department of AgricultureNational Agricultural Statistics Service Cropland Data Layers (2011e2017) and the 2011 National Land Cover Database (NLCD), 2) hay fields and improved pasture are not included as rangelands, and 3) developed open space (as defined by NLCD) is included as a fragmenting land cover type.
This feature class contains 377,322 point features representing the centroid of Tax Map Keys (TMKs) for the state of Hawaii. These features are incorporated in the U.S. EPA Region 9 Hawaii Wastewater Mapping application, a user interface mapping tool to help manage the Large Capacity Cesspool Program compliance and outreach efforts and assist with inspection targeting in Hawaii. The application can be found on the EPA GeoPlatform at: "https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=afd05fc3ab2347b2bcc63c5c20f59926" https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=afd05fc3ab2347b2bcc63c5c20f59926
This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and through the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Most of the source data for this map compilation were digitized from the Geologic-Tectonic Map of the Caribbean Region by J.E. Case and T.L. Holcombe, at a scale of 1:2,500,000. For data management purposes, the world was divided into eight energy regions based on political boundaries and corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. Region Six encompasses the Caribbean area, Central America, and South America. Other products are also available related to Region Six, including the Geologic Map of South America (USGS Open File Report 97-470-D). Countries listed below are shown whole or in part within the map extent of the Caribbean region: Anguilla Antigua and Barbuda Aruba Bahamas Barbados Belize British Virgin Islands Cayman Islands Colombia Costa Rica Cuba Dominica Dominican Republic El Salvador Grenada Guadeloupe Guatemala Guyana Haiti Honduras Jamaica Martinique Mexico Montserrat Netherlands Antilles Nicaragua Panama Puerto Rico St. Kitts and Nevis St. Lucia St. Vincent and the Grenadines Trinidad and Tobago Turks and Caicos Islands United States Venezuela Virgin Islands The world was previously divided into geologic provinces for the World Energy Project, of which a subset is shown on the map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. Each province is assigned a unique number and may fall within two or more countries or assessment regions. The World Geographic Coordinate System of 1984 was used for data storage and map display. Other details about the map compilation and data sources are provided in several metadata formats in the data section on this CD-ROM. Various software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.
This worldwide street map presents highway-level data for the world. Street-level data includes the United States; much of Canada; Mexico; Europe; Japan; Australia and New Zealand; India; South America and Central America; Africa; and most of the Middle East. This comprehensive street map includes highways, major roads, minor roads, one-way arrow indicators, railways, water features, administrative boundaries, cities, parks, and landmarks, overlaid on shaded relief imagery for added context. The map also includes building footprints for selected areas. Coverage is provided down to ~1:4k with ~1:1k and ~1:2k data available in select urban areas. The street map was developed by Esri using Esri basemap data, DeLorme basemap layers, U.S. Geological Survey (USGS) elevation data, Intact Forest Landscape (IFL) data for the world; HERE data for Europe, Australia and New Zealand, North America, South America and Central America, Africa, and most of the Middle East; OpenStreetMap contributors for select countries in Africa; MapmyIndia data in India; and select data from the GIS user community. For more information on this map, including the terms of use, visit us online at http://goto.arcgisonline.com/maps/World_Street_Map
This dataset provides maps of tidal marsh green vegetation, non-vegetation, and open water for six estuarine regions of the conterminous United States: Cape Cod, MA; Chesapeake Bay, MD, Everglades, FL; Mississippi Delta, LA; San Francisco Bay, CA; and Puget Sound, WA. Maps were derived from current National Agriculture Imagery Program data (2013-2015) using object-based classification for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program (C-CAP) map. These 1m resolution maps were used to calculate the fraction of green vegetation within 30m Landsat pixels for the same tidal marsh regions and these data are provided in a related dataset.
The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Divisions are groupings of states within a census geographic region, established by the Census Bureau for the presentation of census data. The current nine divisions (East North Central, East South Central, Middle Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central) are intended to represent relatively homogeneous areas that are subdivisions of the four census geographic regions.
The Federal Motor Carrier Safety Administration (FMCSA) Regions dataset is as of October 06, 2022 from the Federal Motor Carrier Safety Administration (FMCSA) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This dataset is displayed as polygons depicting the regions covered by the four FMCSA Service Centers. More information on the FMCSA Service Centers, and territories each covers, can be found at: https://www.fmcsa.dot.gov/mission/field-offices
Provides regional identifiers for county based regions of various types. These can be combined with other datasets for visualization, mapping, analyses, and aggregation. These regions include:Metropolitan Statistical Areas (Current): MSAs as defined by US OMB in 2023Metropolitan Statistical Areas (2010s): MSAs as defined by US OMB in 2013Metropolitan Statistical Areas (2000s): MSAs as defined by US OMB in 2003Region: Three broad regions in North Carolina (Eastern, Western, Central)Council of GovernmentsProsperity Zones: NC Department of Commerce Prosperity ZonesNCDOT Divisions: NC Dept. of Transportation DivisionsNCDOT Districts (within Divisions)Metro Regions: Identifies Triangle, Triad, Charlotte, All Other Metros, & Non-MetropolitanUrban/Rural defined by:NC Rural Center (Urban, Regional/Suburban, Rural) - 2020 Census designations2010 Census (Urban = Counties with 50% or more population living in urban areas in 2010)2010 Census Urbanized (Urban = Counties with 50% or more of the population living in urbanized areas in 2010 (50,000+ sized urban area))Municipal Population - State Demographer (Urban = counties with 50% or more of the population living in a municipality as of July 1, 2019)Isserman Urban-Rural Density Typology