Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset encapsulates a detailed examination of market dynamics over a five-year period, focusing on the fluctuation of prices and trading volumes across a diversified portfolio. It covers various sectors including energy commodities like natural gas and crude oil, metals such as copper, platinum, silver, and gold, cryptocurrencies including Bitcoin and Ethereum, and key stock indices and companies like the S&P 500, Nasdaq 100, Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta Platforms. This dataset serves as a valuable resource for analyzing trends and patterns in global markets.
Date: The date of the recorded data, formatted as DD-MM-YYYY. Natural_Gas_Price: Price of natural gas in USD per million British thermal units (MMBtu). Natural_Gas_Vol.: Trading volume of natural gas Crude_oil_Price: Price of crude oil in USD per barrel. Crude_oil_Vol.: Trading volume of crude oil Copper_Price: Price of copper in USD per pound. Copper_Vol.: Trading volume of copper Bitcoin_Price: Price of Bitcoin in USD. Bitcoin_Vol.: Trading volume of Bitcoin Platinum_Price: Price of platinum in USD per troy ounce. Platinum_Vol.: Trading volume of platinum Ethereum_Price: Price of Ethereum in USD. Ethereum_Vol.: Trading volume of Ethereum S&P_500_Price: Price index of the S&P 500. Nasdaq_100_Price: Price index of the Nasdaq 100. Nasdaq_100_Vol.: Trading volume for the Nasdaq 100 index Apple_Price: Stock price of Apple Inc. in USD. Apple_Vol.: Trading volume of Apple Inc. stock Tesla_Price: Stock price of Tesla Inc. in USD. Tesla_Vol.: Trading volume of Tesla Inc. stock Microsoft_Price: Stock price of Microsoft Corporation in USD. Microsoft_Vol.: Trading volume of Microsoft Corporation stock Silver_Price: Price of silver in USD per troy ounce. Silver_Vol.: Trading volume of silver Google_Price: Stock price of Alphabet Inc. (Google) in USD. Google_Vol.: Trading volume of Alphabet Inc. stock Nvidia_Price: Stock price of Nvidia Corporation in USD. Nvidia_Vol.: Trading volume of Nvidia Corporation stock Berkshire_Price: Stock price of Berkshire Hathaway Inc. in USD. Berkshire_Vol.: Trading volume of Berkshire Hathaway Inc. stock Netflix_Price: Stock price of Netflix Inc. in USD. Netflix_Vol.: Trading volume of Netflix Inc. stock Amazon_Price: Stock price of Amazon.com Inc. in USD. Amazon_Vol.: Trading volume of Amazon.com Inc. stock Meta_Price: Stock price of Meta Platforms, Inc. (formerly Facebook) in USD. Meta_Vol.: Trading volume of Meta Platforms, Inc. stock Gold_Price: Price of gold in USD per troy ounce. Gold_Vol.: Trading volume of gold
Image attribute : Image by Freepik
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Preferred Stock Prices, New York Stock Exchange for United States (M11008USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
All data acquired on December 11th 2023
1) Ticker: Stock symbol identifying the company.
2) Company: Name of the company.
3) Sector: Industry category to which the company belongs.
4) Industry: Specific sector or business category of the company.
5) Country: Country where the company is based.
6) Market Cap: Total market value of a company's outstanding shares.
7) Price: Current stock price.
8) Change (%): Percentage change in stock price.
9) Volume: Number of shares traded.
10) Price to Earnings Ratio: Ratio of stock price to earnings per share.
11) Price to Earnings: Price-to-earnings ratio based on past earnings.
12) Forward Price to Earnings: Expected price-to-earnings ratio.
13) Price/Earnings to Growth: Ratio of P/E to earnings growth.
14) Price to Sales: Ratio of stock price to annual sales.
15) Price to Book: Ratio of stock price to book value.
16) Price to Cash: Ratio of stock price to cash per share.
17) Price to Free Cash Flow: Ratio of stock price to free cash flow.
18) Earnings Per Share This Year (%): Percentage change in earnings per share for the current year.
19) Earnings Per Share Next Year (%): Percentage change in earnings per share for the next year.
20) Earnings Per Share Past 5 Years (%): Percentage change in earnings per share over the past 5 years.
21) Earnings Per Share Next 5 Years (%): Estimated percentage change in earnings per share over the next 5 years.
22) Sales Past 5 Years (%): Percentage change in sales over the past 5 years.
23) Dividend (%): Dividend yield as a percentage of the stock price.
24) Return on Assets (%): Percentage return on total assets.
25) Return on Equity (%): Percentage return on shareholder equity.
26) Return on Investment (%): Percentage return on total investment.
27) Current Ratio: Ratio of current assets to current liabilities.
28) Quick Ratio: Ratio of liquid assets to current liabilities.
29) Long-Term Debt to Equity: Ratio of long-term debt to shareholder equity.
30) Debt to Equity: Ratio of total debt to shareholder equity.
31) Gross Margin (%): Percentage difference between revenue and cost of goods sold.
32) Operating Margin (%): Percentage of operating income to revenue.
33) Profit Margin: Percentage of net income to revenue.
34) Earnings: Net income of the company.
35) Outstanding Shares: Total number of shares issued by the company.
36) Float: Tradable shares available to the public.
37) Insider Ownership (%): Percentage of company owned by insiders.
38) Insider Transactions: Recent insider buying or selling activity.
39) Institutional Ownership (%): Percentage of company owned by institutional investors.
40) Float Short (%): Percentage of tradable shares sold short by investors.
41) Short Ratio: Number of days it would take to cover short positions.
42) Average Volume: Average number of shares traded daily.
43) Performance (Week) (%): Weekly stock performance percentage.
44) Performance (Month) (%): Monthly stock performance percentage.
45) Performance (Quarter) (%): Quarterly stock performance percentage.
46) Performance (Half Year) (%): Semi-annual stock performance percentage.
47) Performance (Year) (%): Annual stock performance percentage.
48) Performance (Year to Date) (%): Year-to-date stock performance percentage.
49) Volatility (Week) (%): Weekly stock price volatility percentage.
50) Volatility (Month) (%): Monthly stock price volatility percentage.
51) Analyst Recommendation: Analyst consensus recommendation on the stock.
52) Relative Volume: Volume compared to the average volume.
53) Beta: Measure of stock price volatility relative to the market.
54) Average True Range: Average price range of a stock.
55) Simple Moving Average (20) (%): Percentage difference from the 20-day simple moving average.
56) Simple Moving Average (50) (%): Percentage difference from the 50-day simple moving average.
57) Simple Moving Average (200) (%): Percentage difference from the 200-day simple moving average.
58) Yearly High (%): Percentage difference from the yearly high stock price.
59) Yearly Low (%): Percentage difference from the yearly low stock price.
60) Relative Strength Index: Momentum indicator measuring the speed and change of price movements.
61) Change from Open (%): Percentage change from the opening stock price.
62) Gap (%): Percentage difference between the previous close and the current open price.
63) Volume: Total number of shares traded.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Sure! Here's a copy-paste friendly version of the dataset details you can use directly in your Kaggle dataset description:
This dataset provides detailed information on over 500 publicly traded US companies, including their current stock price, volume, market capitalization, P/E ratio, and performance indicators such as daily change and 52-week change. It is ideal for financial analysis, algorithmic trading models, or studying market behavior.
stocks.csv| Column Name | Type | Description |
|---|---|---|
Symbol | object | Ticker symbol of the stock (e.g., AAPL, TSLA) |
Name | object | Full company name |
Price(USD) | float64 | Current stock price in USD |
Change | float64 | Daily price change (USD) |
Change % | float64 | Daily percentage change in price |
Volume_M | float64 | Current trading volume in millions |
Avg_Vol_3m | float64 | Average 3-month trading volume (millions) |
Market_Cap_B | float64 | Market capitalization in billions USD |
PE_Ratio | float64 | Price-to-Earnings ratio (NaN for companies with negative earnings) |
52_WK_Change % | float64 | Percentage change in price over the last 52 weeks |
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides financial information for a selection of companies listed on the S&P 500 index in the United States. It includes key metrics such as last recorded stock prices, highest and lowest stock prices, absolute and percentage changes, and trading volumes. The data is collected at a specific point in time and offers insights into the stock market performance of S&P 500 companies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
T-Mobile Us stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterEnd-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US_Stock_Data.csv dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.
The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:
The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.
This dataset is highly versatile and can be utilized for various financial research purposes:
The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.
This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of All Common Stock Prices for United States (M1125BUSM347NNBR) from Jan 1945 to Dec 1968 about stock market, indexes, and USA.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Huge US Stocks prices + 1292 columns extra data from Indicators. This Dataset provides historical Open, High, Low, Close, and Volume (OHLCV) prices of stocks traded in the United States financial markets AND calculated 1292 columns of indicators. You can use all this hyge data for stock price predictions.
Columns with Momentum Indicator values ADX - Average Directional Movement Index ADXR - Average Directional Movement Index Rating APO - Absolute Price Oscillator AROON - Aroon AROONOSC - Aroon Oscillator BOP - Balance Of Power CCI - Commodity Channel Index CMO - Chande Momentum Oscillator DX - Directional Movement Index MACD - Moving Average Convergence/Divergence MACDEXT - MACD with controllable MA type MACDFIX - Moving Average Convergence/Divergence Fix 12/26 MFI - Money Flow Index MINUS_DI - Minus Directional Indicator MINUS_DM - Minus Directional Movement MOM - Momentum PLUS_DI - Plus Directional Indicator PLUS_DM - Plus Directional Movement PPO - Percentage Price Oscillator ROC - Rate of change : ((price/prevPrice)-1)*100 ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice ROCR - Rate of change ratio: (price/prevPrice) ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100 RSI - Relative Strength Index STOCH - Stochastic STOCHF - Stochastic Fast STOCHRSI - Stochastic Relative Strength Index TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA ULTOSC - Ultimate Oscillator WILLR - Williams' %R
Columns with Volatility Indicator values ATR - Average True Range NATR - Normalized Average True Range TRANGE - True Range
Columns with Volume Indicator values AD - Chaikin A/D Line ADOSC - Chaikin A/D Oscillator OBV - On Balance Volume
Columns with Overlap Studies values BBANDS - Bollinger Bands DEMA - Double Exponential Moving Average EMA - Exponential Moving Average HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline KAMA - Kaufman Adaptive Moving Average MA - Moving average MAMA - MESA Adaptive Moving Average MAVP - Moving average with variable period MIDPOINT - MidPoint over period MIDPRICE - Midpoint Price over period SAR - Parabolic SAR SAREXT - Parabolic SAR - Extended SMA - Simple Moving Average T3 - Triple Exponential Moving Average (T3) TEMA - Triple Exponential Moving Average TRIMA - Triangular Moving Average WMA - Weighted Moving Average
Columns with Cycle Indicator values HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase HT_PHASOR - Hilbert Transform - Phasor Components HT_SINE - Hilbert Transform - SineWave HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode
If you want to download actual data - on today for example, then you can use python code from my github. tickers = ['CE.US', 'WELL.US', 'GRMN.US', 'IEX.US', 'CAG.US', 'BEN.US', 'ATO.US', 'WY.US', 'TSCO.US', 'COR.US', 'MOS.US', 'SWKS.US', 'ORCL.US', 'URI.US', 'INCY.US', 'MPC.US', 'HD.US', 'PPG.US', 'NUE.US', 'DDOG.US', 'HSIC.US', 'CAT.US', 'HSY.US', 'MKTX.US', 'CCEP.US', 'GWW.US', 'LEN.US', 'IFF.US', 'GL.US', 'MDB.US', 'SNPS.US', 'KR.US', 'DVN.US', 'SYY.US', 'USB.US', 'DRI.US', 'PARA.US', 'FMC.US', 'UBER.US', 'WRK.US', 'DLR.US', 'SO.US', 'AMGN.US', 'MA.US', 'STT.US', 'BWA.US', 'KVUE.US', 'GFS.US', 'BBY.US', 'BK.US', 'MRVL.US', 'VFC.US', 'EIX.US', 'ADSK.US', 'ZBH.US', 'MU.US', 'HUBB.US', 'PEAK.US', 'CVX.US', 'CPB.US', 'GILD.US', 'BXP.US', 'DD.US', 'MCD.US', 'KDP.US', 'GE.US', 'PKG.US', 'HST.US', 'WTW.US', 'XOM.US', 'ED.US', 'SPG.US', 'PFG.US', 'LVS.US', 'FAST.US', 'ROST.US', 'TTD.US', 'CNC.US', 'PGR.US', 'CMI.US', 'TEAM.US', 'MELI.US', 'BKR.US', 'EBAY.US', 'CPRT.US', 'MSFT.US', 'HOLX.US', 'ABBV.US', 'AMZN.US', 'FE.US', 'WYNN.US', 'KMI.US', 'APA.US', 'CRWD.US', 'DPZ.US', 'EQT.US', 'NOC.US', 'TAP.US', 'ETR.US', 'T.US', 'OMC.US', 'MTCH.US', 'TRMB.US', 'EXPE.US', 'DTE.US', 'PNR.US', 'LH.US', 'ALL.US', 'CTRA.US', 'VMC.US', 'XRAY.US', 'NWS.US', 'GOOGL.US', 'WEC.US', 'BIIB.US', 'LLY.US', 'BMY.US', 'STE.US', 'NI.US', 'MKC.US', 'AMT.US', 'CFG.US', 'LW.US', 'HIG.US', 'ETSY.US', 'AON.US', 'ULTA.US', 'DVA.US', 'LKQ.US', 'MPWR.US', 'TEL.US', 'FICO.US', 'CVS.US', 'CMA.US', 'NVDA.US', 'TDG.US', 'AWK.US', 'PSA.US', 'FOXA.US', 'ON.US', 'ODFL.US', 'NVR.US', 'ROP.US', 'TFX.US', 'HLT.US', 'EXPD.US', 'FOX.US', 'D.US', 'AMAT.US', 'AZO.US', 'DLTR.US', 'TT.US', 'SBUX.US', 'JNJ.US', 'HAS.US', 'DASH.US', 'NRG.US', 'JNPR.US', 'BIO.US', 'AMD.US', 'NFLX.US', 'VLTO.US', 'BRO.US', 'REGN.US', 'WRB.US', 'LRCX.US', 'SYK.US', 'MCO.US', 'CSGP.US', 'TROW.US', 'ETN.US', 'RTX.US', 'CRM.US', 'SIRI.US', 'UPS.US', 'HES.US', 'RSG.US', 'PEP.US', 'MET.US', 'HON.US', 'IQV.US', 'JPM.US', 'DG.US', 'CBRE.US', 'NDSN.US', 'DOW.US', 'SBAC.US', 'TSN.US', 'IT.US', 'WM.US', 'TPR.US', 'IBM.US', 'CHTR.US', 'HAL.US', 'ROL.US', 'FDS.US', 'SHW.US', 'EW.US', 'RJF.US', 'APH.US', 'AIZ.US', 'ZBRA.US', 'SRE.US', 'CTAS.US', 'PXD.US', 'MTD.US', 'NOW.US', 'MAS.US', 'FFIV.US', 'ELV.US', 'SYF.US', 'CSCO.US', 'APTV...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for United States Stock Market Index (US500) including live quotes, historical charts and news. United States Stock Market Index (US500) was last updated by Trading Economics this December 1 of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterThroughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.
It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Stock Prices: 12 Months Expectation: Increase data was reported at 36.100 % in Apr 2025. This records a decrease from the previous number of 39.900 % for Mar 2025. United States Stock Prices: 12 Months Expectation: Increase data is updated monthly, averaging 36.200 % from Jun 1987 (Median) to Apr 2025, with 455 observations. The data reached an all-time high of 57.200 % in Nov 2024 and a record low of 18.100 % in Mar 2008. United States Stock Prices: 12 Months Expectation: Increase data remains active status in CEIC and is reported by The Conference Board. The data is categorized under Global Database’s United States – Table US.H052: Consumer Confidence Index: Stock Price Expectation. [COVID-19-IMPACT]
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Financial Market: Share Prices for United States (SPASTT01USM661N) from Jan 1957 to Oct 2025 about stock market and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for United States Stock Price Volatility
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.