69 datasets found
  1. 2022 Cartographic Boundary File (SHP), United States, 1:5,000,000

    • catalog.data.gov
    • gimi9.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (SHP), United States, 1:5,000,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-shp-united-states-1-5000000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. This file depicts the shape of the United States clipped back to a generalized coastline. This nation layer covers the extent of the fifty states, the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) when scale appropriate.

  2. a

    Northeastern States State Boundary Set

    • hub.arcgis.com
    • geodata.ct.gov
    • +3more
    Updated Oct 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2019). Northeastern States State Boundary Set [Dataset]. https://hub.arcgis.com/maps/73de6773a9d64f77a1fac65bbaaf4323
    Explore at:
    Dataset updated
    Oct 30, 2019
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Northeastern United States State Boundary data are intended for geographic display of state boundaries at statewide and regional levels. Use it to map and label states on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)

  3. United States Census Regions 2022

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2022). United States Census Regions 2022 [Dataset]. https://koordinates.com/layer/110430-united-states-census-regions-2022/
    Explore at:
    geopackage / sqlite, shapefile, pdf, mapinfo tab, mapinfo mif, kml, dwg, csv, geodatabaseAvailable download formats
    Dataset updated
    Sep 14, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Area covered
    United States,
    Description

    Census Current (2022) Legal and Statistical Entities Web Map Service; January 1, 2022 vintage.

    Census Regions are groupings of states and the District of Columbia that subdivide the United States for the presentation of census data. There are four census regions-Northeast, Midwest, South, and West. Each of the four census regions is divided into two or more census divisions. Puerto Rico and the Island Areas are not part of any census region or census division.

  4. NOAA NCCOS Assessment: Prioritizing Areas for Future Seafloor Mapping and...

    • zenodo.org
    • datasets.ai
    • +4more
    zip
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja; Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja (2023). NOAA NCCOS Assessment: Prioritizing Areas for Future Seafloor Mapping and Exploration in the U.S. Caribbean from 2019-06-28 to 2019-07-28 [Dataset]. http://doi.org/10.5281/zenodo.3909729
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja; Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Caribbean, United States
    Description

    Spatial information about the seafloor is critical for decision-making by marine resource science, management and tribal organizations. Coordinating data needs can help organizations leverage collective resources to meet shared goals. To help enable this coordination, the National Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean Science (NCCOS) developed a spatial framework, process and online application to identify common data collection priorities for seafloor mapping, sampling and visual surveys off the US Caribbean territories of Puerto Rico and the US Virgin Islands. Fifteen participants from local federal, state, and academic institutions entered their priorities in an online application, using virtual coins to denote their priorities in 2.5x2.5 kilometer (nearshore) and 10x10 kilometer (offshore) grid size. Grid cells with more coins were higher priorities than cells with fewer coins. Participants also reported why these locations were important and what data types were needed. Results were analyzed and mapped using statistical techniques to identify significant relationships between priorities, reasons for those priorities and data needs. Fifteen high priority locations were broadly identified for future mapping, sampling and visual surveys. These locations include: (1) a coastal location in northwest Puerto Rico (Punta Jacinto to Punta Agujereada), (2) a location approximately 11 km off Punta Agujereada, (3) coastal Rincon, (4) San Juan, (5) Punta Arenas (west of Vieques Island), (6) southwest Vieques, (7) Grappler Seamount, (8) southern Virgin Passage, (9) north St. Thomas, (10) east St. Thomas, (11) south St. John, (12) west offshore St. Croix, (13) west nearshore St. Croix, (14) east nearshore St. Croix, and (15) east offshore St. Croix. Participants consistently selected (1) Biota/Important Natural Area, (2) Commercial Fishing and (3) Coastal/Marine Hazards as their top reasons (i.e., justifications) for prioritizing locations, and (1) Benthic Habitat Map and (2) Sub-bottom Profiles as their top data or product needs. This ESRI shapefile summarizes the results from this spatial prioritization effort. This information will enable US Caribbean organization to more efficiently leverage resources and coordinate their mapping of high priority locations in the region.

    This effort was funded by NOAA’s NCCOS and supported by CRCP. The overall goal of the project was to systematically gather and quantify suggestions for seafloor mapping, sampling and visual surveys in the US Caribbean territories of Puerto Rico and the US Virgin Islands. The results are will help organizations in the US Caribbean identify locations where their interests overlap with other organizations, to coordinate their data needs and to leverage collective resources to meet shared goals.

    There were four main steps in the US Caribbean spatial prioritization process. The first step was to identify the technical advisory team, which included the 4 CRCP members: 2 from each the Puerto Rico and USVI regions. This advisory team recommended 33 organizations to participate in the prioritization. Each organization was then requested to designate a single representative, or respondent, who would have access to the web tool. The respondent would be responsible for communicating with their team about their needs and inputting their collective priorities. Step two was to develop the spatial framework and an online application. To do this, the US Caribbean was divided into 4 sub regions: nearshore and offshore for both Puerto Rico and USVI. The total inshore regions had 2,387 square grid cells approximately 2.5x2.5 km in size. The total offshore regions consisted of 438 square grid cells 10x10 km in size. Existing relevant spatial datasets (e.g., bathymetry, protected area boundaries, etc.) were compiled to help participants understand information and data gaps and to identify areas they wanted to prioritize for future data collections. These spatial datasets were housed in the online application, which was developed using Esri’s Web AppBuilder. In step three, this online application was used by 15 participants to enter their priorities in each subregion of interest. Respondents allocated virtual coins in the grid cells to denote their priorities for each region. Respondents were given access to all four regions, despite which territory they represented, but were not required to provide input into each region. Grid cells with more coins were higher priorities than cells with fewer coins. Participants also reported why these locations were important and what data types were needed. Coin values were standardized across the nearshore and offshore zones and used to identify spatial patterns across the US Caribbean region as a whole. The number of coins were standardized because each subregion had a different number of grid cells and participants. Standardized coin values were analyzed and mapped using statistical techniques, including hierarchical cluster analysis, to identify significant relationships between priorities, reasons for those priorities and data needs. This ESRI shapefile contains the 2.5x2.5 km and 10x10 km grid cells used in this prioritization effort and associated the standardized coin values overall, as well as by organization, justification and product. For a complete description of the process and analysis please see: Kraus et al. 2020.

  5. o

    Geographic Regions

    • nc-state-demographer-ncosbm.opendatasoft.com
    • linc.osbm.nc.gov
    • +3more
    csv, excel, geojson +1
    Updated Mar 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Geographic Regions [Dataset]. https://nc-state-demographer-ncosbm.opendatasoft.com/explore/dataset/north-carolina-geographic-regions/map/?flg=es-es
    Explore at:
    excel, json, geojson, csvAvailable download formats
    Dataset updated
    Mar 19, 2021
    Description

    Provides regional identifiers for county based regions of various types. These can be combined with other datasets for visualization, mapping, analyses, and aggregation. These regions include:Metropolitan Statistical Areas (Current): MSAs as defined by US OMB in 2023Metropolitan Statistical Areas (2010s): MSAs as defined by US OMB in 2013Metropolitan Statistical Areas (2000s): MSAs as defined by US OMB in 2003Region: Three broad regions in North Carolina (Eastern, Western, Central)Council of GovernmentsProsperity Zones: NC Department of Commerce Prosperity ZonesNCDOT Divisions: NC Dept. of Transportation DivisionsNCDOT Districts (within Divisions)Metro Regions: Identifies Triangle, Triad, Charlotte, All Other Metros, & Non-MetropolitanUrban/Rural defined by:NC Rural Center (Urban, Regional/Suburban, Rural) - 2020 Census designations2010 Census (Urban = Counties with 50% or more population living in urban areas in 2010)2010 Census Urbanized (Urban = Counties with 50% or more of the population living in urbanized areas in 2010 (50,000+ sized urban area))Municipal Population - State Demographer (Urban = counties with 50% or more of the population living in a municipality as of July 1, 2019)Isserman Urban-Rural Density Typology

  6. 2023 Cartographic Boundary File (KML), Division for United States,...

    • catalog.data.gov
    • gimi9.com
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (KML), Division for United States, 1:20,000,000 [Dataset]. https://catalog.data.gov/dataset/2023-cartographic-boundary-file-kml-division-for-united-states-1-20000000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Divisions are groupings of states within a census geographic region, established by the Census Bureau for the presentation of census data. The current nine divisions (East North Central, East South Central, Middle Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central) are intended to represent relatively homogeneous areas that are subdivisions of the four census geographic regions.

  7. Connecticut Planning Region Index

    • data.ct.gov
    • geodata.ct.gov
    • +5more
    application/rdfxml +5
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy and Environmental Protection (2025). Connecticut Planning Region Index [Dataset]. https://data.ct.gov/Environment-and-Natural-Resources/Connecticut-Planning-Region-Index/6ngw-fgzi
    Explore at:
    csv, json, application/rssxml, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    Connecticut Department of Energy and Environmental Protectionhttps://www.ct.gov/deep
    Authors
    Department of Energy and Environmental Protection
    Area covered
    Connecticut
    Description

    Connecticut Planning Region Index is a general purpose index map of Connecticut Planning Regions based on mapped information compiled at 1:125,000 scale (1 inch equals approximately 2 miles) and a list of towns in each region available from the State of Connecticut, Office of Policy and Management. The layer is designed to be used to depict Connecticut Planning Regions at small scales or on small maps printed on regular size (8.5 x 11 inch) paper, for example. This Planning Region Index layer does not accurately represent planning region boundaries because it was digitized at 1:125,000 scale. Do not display, map or analyze this index layer with information collected at larger scales. To depict more accurate 1:24,000-scale Connecticut state, county, town, and planning region boundaries on a map, use the layer named Town, which is also published by the State of Connecticut Department of Energy & Environmental Protection. The 2012 Edition reflects consolidation of two organizations into the Lower Connecticut River Council of Governments.

  8. Public and Private Forest Ownership Conterminous United States (Map Service)...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Public and Private Forest Ownership Conterminous United States (Map Service) [Dataset]. https://catalog.data.gov/dataset/public-and-private-forest-ownership-conterminous-united-states-map-service-cfedc
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    United States, Contiguous United States
    Description

    The data are designed for strategic analyses at a national or regional scale which require spatially explicit information regarding the extent, distribution, and prevalence of the ownership types represented. The data are not recommended for tactical analyses on a sub-regional scale, or for informing local management decisions. Furthermore, map accuracies vary considerably and thus the utility of these data can vary geographically under different ownership patterns.

  9. Z

    GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIT Climate & Sustainability Consortium (2025). GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13207715
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    Bashir, Noman
    MacDonell, Danika
    MIT Climate & Sustainability Consortium
    Borrero, Micah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary

    Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.

    Relevant Links

    Link to the online version of the tool (requires creation of a free user account).

    Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.

    Funding

    This dataset was produced with support from the MIT Climate & Sustainability Consortium.

    Original Data Sources

    These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:

    Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)

    faf5_freight_flows/*.geojson

    trucking_energy_demand.geojson

    highway_assignment_links_*.geojson

    infrastructure_pooling_thought_experiment/*.geojson

    Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.

    Shapefile for FAF5 Regions

    Shapefile for FAF5 Highway Network Links

    FAF5 2022 Origin-Destination Freight Flow database

    FAF5 2022 Highway Assignment Results

    Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.

    License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.

    Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.

    Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070

    Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.

    Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644

    grid_emission_intensity/*.geojson

    Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.

    eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.

    eGRID database

    Shapefile with eGRID subregion boundaries

    Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.

    Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.

    These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

    daily_grid_emission_profiles/*.geojson

    Hourly emission intensity data obtained from ElectricityMaps.

    Original data can be downloaded as csv files from the ElectricityMaps United States of America database

    Shapefile with region boundaries used by ElectricityMaps

    License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal

    Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.

    Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.

    gen_cap_2022_state_merged.geojson

    trucking_energy_demand.geojson

    Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.

    U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.

    Annual electricity generation by state

    Net summer capacity by state

    Shapefile with U.S. state boundaries

    Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.

    electricity_rates_by_state_merged.geojson

    Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.

    Electricity rate by state

    Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.

    demand_charges_merged.geojson

    demand_charges_by_state.geojson

    Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.

    Historical demand charge dataset

    The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').

    Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.

    eastcoast.geojson

    midwest.geojson

    la_i710.geojson

    h2la.geojson

    bayarea.geojson

    saltlake.geojson

    northeast.geojson

    Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.

    The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.

    The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.

    Shapefile for Bay Area country boundaries

    Shapefile for counties in Utah

    Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.

    Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.

    Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.

    License for Utah boundaries: Creative Commons 4.0 International License.

    incentives_and_regulations/*.geojson

    State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.

    Data was collected manually from the State Laws and Incentives database.

    Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.

    These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

    costs_and_emissions/*.geojson

    diesel_price_by_state.geojson

    trucking_energy_demand.geojson

    Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.

    In

  10. a

    US States

    • hub.arcgis.com
    • data-algeohub.opendata.arcgis.com
    Updated Jan 31, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alabama GeoHub (2018). US States [Dataset]. https://hub.arcgis.com/maps/ALGeoHub::us-states
    Explore at:
    Dataset updated
    Jan 31, 2018
    Dataset authored and provided by
    Alabama GeoHub
    Area covered
    United States,
    Description

    2017 TIGER/Line® Shapefiles: States (and equivalent)

  11. c

    Data from: US States and Territories

    • hub.wftiic.ca.gov
    • heat.gov
    • +16more
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2024). US States and Territories [Dataset]. https://hub.wftiic.ca.gov/datasets/us-states-and-territories-3
    Explore at:
    Dataset updated
    Jun 24, 2024
    Dataset authored and provided by
    CA Governor's Office of Emergency Services
    Area covered
    United States,
    Description

    Official NWS Advanced Weather Interactive Processing System (AWIPS) background US State and Territory designations.

    See: "http://www.nws.noaa.gov/geodata/index.html"

  12. d

    Data from: Geographic Locations of Seabed Sediment Samples from the...

    • search.dataone.org
    • data.usgs.gov
    • +3more
    Updated Feb 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leslie B. Gallea (2018). Geographic Locations of Seabed Sediment Samples from the Stellwagen Bank National Marine Sanctuary Region (SB_SEDSAMPLES Shapefile) [Dataset]. https://search.dataone.org/view/1c719594-465d-47c1-bc48-0457150c9078
    Explore at:
    Dataset updated
    Feb 1, 2018
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Leslie B. Gallea
    Time period covered
    Jan 1, 1993 - Jan 1, 2004
    Area covered
    Variables measured
    FID, Mud, Quad, Year, Shape, Latitude, 1_phi_siz, 2_phi_siz, 3_phi_siz, 4_phi_siz, and 27 more
    Description

    The U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1993 to 2004. The mapped area is approximately 3,700 square km (1,100 square nm) in size and was subdivided into 18 quadrangles. Several series of sea floor maps of the region based on multibeam sonar surveys have been published. In addition, 2,628 seabed sediment samples were collected and analyzed and approximately 10,600 still photographs of the seabed were acquired during the project. These data provide the basis for scientists, policymakers, and managers for understanding the complex ecosystem of the sanctuary region and for monitoring and managing its economic and natural resources.

  13. us-states.json

    • figshare.com
    json
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Y D (2024). us-states.json [Dataset]. http://doi.org/10.6084/m9.figshare.27638031.v1
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Y D
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Us Map .json data from OSU CSE 5544 class

  14. A

    Northeastern States Town Boundary Set

    • data.amerigeoss.org
    • data.ct.gov
    • +5more
    html, json
    Updated Jan 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Northeastern States Town Boundary Set [Dataset]. https://data.amerigeoss.org/dataset/northeastern-states-town-boundary-set-d6d2e
    Explore at:
    json, htmlAvailable download formats
    Dataset updated
    Jan 18, 2022
    Dataset provided by
    United States
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Northeastern United States Town Boundary data are intended for geographic display of state, county and town (municipal) boundaries at statewide and regional levels. Use it to map and label towns on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)

  15. BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil and Natural Gas...

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Nov 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Ocean Energy Management (BOEM) (2016). BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil and Natural Gas Wells [Dataset]. https://koordinates.com/layer/15437-boem-bsee-marine-cadastre-layers-national-scale-ocs-oil-and-natural-gas-wells/
    Explore at:
    geodatabase, pdf, shapefile, mapinfo tab, dwg, mapinfo mif, kml, geopackage / sqlite, csvAvailable download formats
    Dataset updated
    Nov 16, 2016
    Dataset provided by
    Federal government of the United Stateshttp://www.usa.gov/
    Bureau of Ocean Energy Managementhttp://www.boem.gov/
    Authors
    US Bureau of Ocean Energy Management (BOEM)
    Area covered
    Description

    Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.

    © MarineCadastre.gov This layer is a component of BOEMRE Layers.

    This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.

    For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov

    The REST services for National Level Data can be found here: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer

    REST services for regional level data can be found by clicking on the region of interest from the following URL: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE

    Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL: http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx

    Currently the following layers are available from this REST location:

    OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.

    OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.

    OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.

    BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.

    BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.

    Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.

    Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip

    BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest. http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.

    BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to

  16. n

    Mapping Data 1: Constructing a Choropleth Map

    • library.ncge.org
    Updated Jul 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). Mapping Data 1: Constructing a Choropleth Map [Dataset]. https://library.ncge.org/documents/a27510ae38474d47b54461de7aa090b0
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset authored and provided by
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: M Crampton, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 4, grade 8, high schoolResource type: lessonSubject topic(s): mapsRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Acquire skills in data based mapping.
    2. Recognize patterns of distribution.
    3. Analyze patterns of distribution.
    4. Construct and evaluate hypotheses of those distributions.
    5. Explain the concept of regions.Summary: Students become cartographers in this introductory lesson as they learn how to map data. Students will generate hypotheses based on the patterns and seek additional data to test the hypotheses. The lesson assumes data on U.S. states, but data at a local, national or global scale may be used.
  17. i

    Indiana State Boundary 2020

    • indianamap.org
    • indianamap-inmap.hub.arcgis.com
    • +2more
    Updated Nov 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2022). Indiana State Boundary 2020 [Dataset]. https://www.indianamap.org/maps/INMap::indiana-state-boundary-2020
    Explore at:
    Dataset updated
    Nov 28, 2022
    Dataset authored and provided by
    IndianaMap
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    From the U.S. Census Tiger/Line 2019 Technical Documentation (https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2019/TGRSHP2019_TechDoc.pdf page 3-62): States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty states, the Census Bureau treats the District of Columbia, Puerto Rico, and the Island areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as statistical equivalents of states for the purpose of data presentation. Census regions and divisions consist of groupings of states and equivalent entities. Region and division codes are included in the state shapefiles and users can merge state records to form those areas.

  18. d

    Digital data from previous USGS hydrogeologic studies of the Gulf Coast...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital data from previous USGS hydrogeologic studies of the Gulf Coast region, south-central United States [Dataset]. https://catalog.data.gov/dataset/digital-data-from-previous-usgs-hydrogeologic-studies-of-the-gulf-coast-region-south-centr
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Gulf Coast of the United States, West South Central states, United States
    Description

    This dataset captures in digital form the results of previously published U.S. Geological Survey (USGS) Water Mission Area studies related to water resource assessment of Cenozoic strata and unconsolidated deposits within the Mississippi Embayment and the Gulf Coastal Plain of the south-central United States. The data are from reports published from the late 1980s to the mid-1990s by the Gulf Coast Regional Aquifer-System Analysis (RASA) studies and in 2008 by the Mississippi Embayment Regional Aquifer Study (MERAS). These studies, and the data presented here, describe the geologic and hydrogeologic units of the Mississippi embayment, Texas coastal uplands, and the coastal lowlands aquifer systems, south-central United States. The Mississippi embayment, Texas coastal uplands, and coastal lowlands aquifer systems underlie about 487,000 km2 in parts of Alabama, Arkansas, Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas from the Rio Grande on the west to the western part of Florida on the east. The previously published investigations divided the Cenozoic strata and unconsolidated deposits within the Mississippi Embayment and the Gulf Coastal Plain into 11 major geologic units, typically mapped at the group level, with several additional units at the formational level, which were aggregated into six hydrogeologic units within the Mississippi embayment and Texas coastal uplands and into five hydrogeologic units within the Coastal Lowlands aquifer system. These units include the Mississippi River Valley alluvial aquifer, Vicksburg-Jackson confining unit (contained within the Jackson Group), the upper Claiborne aquifer (contained within the Claiborne Group), the middle Claiborne confining unit (contained within the Claiborne Group), the middle Claiborne aquifer (contained within the Claiborne Group), the lower Claiborne confining unit (contained within the Claiborne Group), the lower Claiborne aquifer (contained within the Claiborne Group), the middle Wilcox aquifer (contained within the Wilcox Group), the lower Wilcox aquifer (contained within the Wilcox Group), and the Midway confining unit (contained within the Midway Group). This dataset includes structure contour and thickness data digitized from plates in two reports, borehole data compiled from two reports, and a geologic map digitized from a report plate. Structure contour and thickness maps of hydrogeologic units in the Mississippi Embayment and Texas coastal uplands had been previously digitized by a USGS study from georeferenced images of altitude and thickness contours in USGS Professional Paper 1416-B (Hosman and Weiss, 1991). These data, which were stored on the USGS Water Mission Area’s NSDI node, were downloaded, reformatted, and attributed for present dataset. Structure contour maps of geologic units in the Mississippi Embayment and Texas coastal uplands were digitized and attributed from georeferenced images of altitude and thickness contours in USGS Professional Paper 1416-G (Hosman, 1996) for this data release. Borehole data in this data release include data compiled for USGS Gulf Coast RASA studies in which a scanned version of a USGS report (Wilson and Hosman, 1987) was converted through optical character recognition and then manipulated to form a data table, and from borehole data compiled for the subsequent MERAS study (Hart and Clark, 2008) where an Excel workbook was downloaded and manipulated for use in a GIS and as part of this dataset. The digital geologic map was digitized from Plate 4 of USGS Professional Paper 1416-G (Hosman, 1996) and then attributed according to the USGS National Cooperative Geologic Mapping Program’s GeMS digital geologic map schema. The digital dataset a digital geologic map with contacts and faults and geologic map polygons distributed as separate feature classes within a geographic information system geodatabase. The geologic map database is a digital representation of the geologic compilation of the Guld Coast region originally published as Plate 4 of USGS Professional Paper 1416-G (Hosman, 1996). The dataset includes a second geographic information system geodatabase that contain digital structure contour and thickness data as polyline feature classes for all of the hydrogeologic units contoured in USGS Professional Paper 1416-B (Hosman and Weiss, 1991) and all of the geologic units contoured in USGS Professional Paper 1416-G (Hosman, 1996). The geodatabase also contains separate point feature classes that portray borehole location and the depth to hydrogeologic units penetrated downhole for all boreholes compiled for the USGS RASA sturdies by Wilson and Hosman (1987) and for the subsequent USGS MERAS study (Hart and Clark, 2008). Borehole data are provided in Microsoft Excel spreadsheet that includes separate TABs for well location and tabulation of the depths to top and base of hydrogeologic units intercepted downhole, in a format suitable for import into a relational database. Each of the geographic information system geodatabases include non-spatial tables that describe the sources of geologic or hydrogeologic information, a glossary of terms, and a description of units. Also included is a Data Dictionary that duplicates the Entity and Attribute information contained in the metadata file. To maximize usability, spatial data are also distributed as shapefiles and tabular data are distributed as ascii text files in comma separated values (CSV) format.

  19. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Arguello, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

  20. d

    Data from: California State Waters Map Series--Monterey Canyon and Vicinity...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Monterey Canyon and Vicinity Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-monterey-canyon-and-vicinity-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Monterey Canyon, Monterey County
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Monterey Canyon and Vicinity map area data layers. Data layers are symbolized as shown on the associated map sheets.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (SHP), United States, 1:5,000,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-shp-united-states-1-5000000
Organization logo

2022 Cartographic Boundary File (SHP), United States, 1:5,000,000

Explore at:
Dataset updated
Dec 14, 2023
Dataset provided by
United States Census Bureauhttp://census.gov/
Area covered
United States
Description

The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. This file depicts the shape of the United States clipped back to a generalized coastline. This nation layer covers the extent of the fifty states, the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) when scale appropriate.

Search
Clear search
Close search
Google apps
Main menu