Among the ** largest cities by population in the United States, Milwaukee, WI, had the largest homes in 2023. The average size of a home was over ***** square feet, while in Portland, OR, the average home was 1070 square feet. Since 1975, U.S. homes have grown substantially bigger.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Home Size in Square Feet in the United States (MEDSQUFEEUS) from Jul 2016 to Jun 2025 about square feet, median, and USA.
In 2023, the average size of a single-family home built for sale in the United States amounted to ***** square feet. Although in the past five years American homes have been shrinking, since 1975, they have almost doubled in size. This trend towards larger homes seems illogical given that the average size of families has shrunk over the same period. Why are American homes so large? Homes in the U.S. are among the largest in the world, only surpassed by Australia. There are thought to be several reasons for this, including the concentration of wealth in the country, and the deeply engrained driving culture which means that cheaper land outside city centers is easily accessible. Where are the largest homes located? The size of homes also varies regionally, with the largest homes being located in wealthy, urban areas and in the South. Large homes, or McMansions as they’re often called, are especially popular in Texas. In 2023, Milwaukee and Omaha had the largest average home size.
The majority of houses purchased in the United States in 2024 were between 1,500 and 2,500 square feet. These accounted for about 51 percent of purchases made by house buyers in that year. On the other hand, about nine percent of buyers purchased homes larger than 3500 square feet.
House prices in the second most populous state in the United States, Texas have doubled since 2011. In 2023, the average house price reached ***** U.S. dollars per square foot, up from approximately *** U.S. dollars in 2020. Despite the increase, the median home price was still below the national average.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The United States home construction market is projected to grow from $XX million in 2025 to $XX million by 2033, at a CAGR of 3.00% during the forecast period. Key drivers of this growth include increasing population, rising incomes, and low interest rates. Additionally, the growing popularity of smart homes and green building technologies is creating new opportunities for home builders. The market is segmented by type (apartments & condominiums, villas, and other types), construction type (new construction and renovation), and city (New York City, Los Angeles, San Francisco, Washington DC, and Miami). The new construction segment is expected to hold the largest market share during the forecast period, driven by the increasing demand for new homes from growing families and millennials. The multi-family home builders segment is projected to grow at a higher CAGR than the single-family home builders segment during the forecast period, due to the increasing popularity of urban living and the rising demand for affordable housing. Recent developments include: June 2022 - Pulte Homes - a national brand of PulteGroup, Inc. - announced the opening of its newest Boston-area community, Woodland Hill. Offering 46 new construction single-family homes in the charming town of Grafton, the community is conveniently located near schools, dining, and entertainment, with the Massachusetts Bay Transportation Authority commuter rail less than a mile away. The collection of home designs at Woodland Hill includes three two-story floor plans, ranging in size from 3,013 to 4,019 sq. ft. with four to six bedrooms, 2.5-3.5 baths, and 2-3 car garages. These spacious home designs feature flexible living spaces, plenty of natural light, gas fireplaces, and the signature Pulte Planning Center®, a unique multi-use workstation perfect for homework or a family office., December 2022 - D.R. Horton, Inc. announced the acquisition of Riggins Custom Homes, one of the largest builders in Northwest Arkansas. The homebuilding assets of Riggins Custom Homes and related entities (Riggins) acquired include approximately 3,000 lots, 170 homes in inventory, and 173 homes in the sales order backlog. For the trailing twelve months ended November 30, 2022, Riggins closed 153 homes (USD 48 million in revenue) with an average home size of approximately 1,925 square feet and an average sales price of USD 313,600. D.R. Horton expects to pay approximately USD 107 million in cash for the purchase, and the Company plans to combine the Riggins operations with the current D.R. Horton platform in Northwest Arkansas.. Key drivers for this market are: Indonesia's Hospitality Market Shifting Preference for Local and Authentic Experiences. Potential restraints include: Difficulties in Implementing Tourism Policies. Notable trends are: High-interest Rates are Negatively Impacting the Market.
In the United States, the projected number of single-family housing unit starts in 2026 is estimated to increase. After a peak in 2021, the number of home construction starts decreased two years in a row. However, those figures are expected to pick back up in the next years. Single-family homes are the preferred option for Americans Single-family homes were the most common type of home purchased in 2023 in the United States, making up roughly ** percent of all purchases, showing that demand for single-family units remains strong. That explains why there is usually a far higher number of single-family homes than of other type of homes being built any given year. There were roughly *** multifamily homes whose construction started in 2024. Single family housing units in the United States The median size of a single family housing unit in the United States based on square footage has remained relatively consistent over the past two decades. The cost of housing varies around the United States. In 2023, the most expensive median price of an existing single-family home was on the West coast. However, it was in the Northeast where the median price of a new single-family home was the most expensive.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Home Sales in the United States decreased to 623 Thousand units in May from 722 Thousand units in April of 2025. This dataset provides the latest reported value for - United States New Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
The average American household consisted of 2.51 people in 2023.
Households in the U.S.
As shown in the statistic, the number of people per household has decreased over the past decades.
The U.S. Census Bureau defines a household as follows: “a household includes all the persons who occupy a housing unit as their usual place of residence. A housing unit is a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied (or if vacant, is intended for occupancy) as separate living quarters. Separate living quarters are those in which the occupants live and eat separately from any other persons in the building and which have direct access from outside the building or through a common hall. The occupants may be a single family, one person living alone, two or more families living together, or any other group of related or unrelated persons who share living arrangements. (People not living in households are classified as living in group quarters.).”
The population of the United States has been growing steadily for decades. Since 1960, the number of households more than doubled from 53 million to over 131 million households in 2023.
Most of these households, about 34 percent, are two-person households. The distribution of U.S. households has changed over the years though. The percentage of single-person households has been on the rise since 1970 and made up the second largest proportion of households in the U.S. in 2022, at 28.88 percent.
In concordance with the rise of single-person households, the percentage of family households with own children living in the household has declined since 1970 from 56 percent to 40.26 percent in 2022.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The United States home construction market, valued at approximately $700 billion in 2025, is experiencing robust growth, projected to maintain a compound annual growth rate (CAGR) exceeding 3% through 2033. This expansion is fueled by several key factors. Firstly, a persistent housing shortage, particularly in desirable urban areas like New York City, Los Angeles, and San Francisco, continues to drive demand. Secondly, favorable demographic trends, including millennial household formation and an increasing preference for homeownership, are bolstering the sector. Furthermore, low interest rates (though this is subject to change depending on economic conditions) have historically made mortgages more accessible, stimulating construction activity. However, the market isn't without its challenges. Rising material costs, labor shortages, and supply chain disruptions continue to exert upward pressure on construction prices, potentially impacting affordability and slowing growth in certain segments. The market is segmented by dwelling type (apartments & condominiums, villas, other), construction type (new construction, renovation), and geographic location, with significant activity concentrated in major metropolitan areas. The dominance of large national builders like D.R. Horton, Lennar Corp, and PulteGroup highlights the industry's consolidation trend, while the growth of multi-family construction reflects shifting urban preferences. Looking ahead, the market's trajectory will depend on macroeconomic factors, interest rate fluctuations, government policies impacting housing affordability, and the ability of the industry to address supply-chain and labor challenges. Innovation in construction technologies, sustainable building practices, and prefabricated homes are also emerging trends expected to significantly influence market dynamics over the forecast period. The competitive landscape is characterized by a mix of large publicly traded companies and smaller regional builders. While established players dominate the market share, opportunities exist for smaller firms specializing in niche markets, such as sustainable or luxury home construction, or those focused on specific geographic areas. The ongoing expansion of the market signifies significant potential for investment and growth, despite the hurdles currently impacting the sector. Addressing supply chain disruptions and labor shortages will be crucial for sustained growth. Continued demand in key urban centers and evolving consumer preferences toward specific dwelling types will be critical factors determining the market's future trajectory. Recent developments include: June 2022 - Pulte Homes - a national brand of PulteGroup, Inc. - announced the opening of its newest Boston-area community, Woodland Hill. Offering 46 new construction single-family homes in the charming town of Grafton, the community is conveniently located near schools, dining, and entertainment, with the Massachusetts Bay Transportation Authority commuter rail less than a mile away. The collection of home designs at Woodland Hill includes three two-story floor plans, ranging in size from 3,013 to 4,019 sq. ft. with four to six bedrooms, 2.5-3.5 baths, and 2-3 car garages. These spacious home designs feature flexible living spaces, plenty of natural light, gas fireplaces, and the signature Pulte Planning Center®, a unique multi-use workstation perfect for homework or a family office., December 2022 - D.R. Horton, Inc. announced the acquisition of Riggins Custom Homes, one of the largest builders in Northwest Arkansas. The homebuilding assets of Riggins Custom Homes and related entities (Riggins) acquired include approximately 3,000 lots, 170 homes in inventory, and 173 homes in the sales order backlog. For the trailing twelve months ended November 30, 2022, Riggins closed 153 homes (USD 48 million in revenue) with an average home size of approximately 1,925 square feet and an average sales price of USD 313,600. D.R. Horton expects to pay approximately USD 107 million in cash for the purchase, and the Company plans to combine the Riggins operations with the current D.R. Horton platform in Northwest Arkansas.. Notable trends are: High-interest Rates are Negatively Impacting the Market.
In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.
In the 1970s and 1980s, the average size of newly built houses in the United States was often three times larger than those in the Soviet Union. While this is reflective of the fact that there were more houses than apartments built in the U.S. during this period (and vice versa in the USSR), new apartments in the U.S. were still around 90 square meters in size, which is still considerably larger than those in the Soviet Union.
The average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.
This layer shows housing costs as a percentage of household income. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Income is based on earnings in past 12 months of survey. This layer is symbolized to show the percent of renter households that spend 30.0% or more of their household income on gross rent (contract rent plus tenant-paid utilities). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B25070, B25091 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to inform development of the City's new Comprehensive Plan, Rochester 2034, and retained czb, LLC – a firm with national expertise based in Alexandria, VA – to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. Importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long recognized that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/Dictionary: STATEFP10: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state in the 2010 census. New York State is 36. COUNTYFP10: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county in the 2010 census. Monroe County is 055. TRACTCE10: The six-digit number assigned to each census tract in a US county in the 2010 census. BLKGRPCE10: The single-digit number assigned to each block group within a census tract. The number does not indicate ranking or quality, simply the label used to organize the data. GEOID10: A unique geographic identifier based on 2010 Census geography, typically as a concatenation of State FIPS code, County FIPS code, Census tract code, and Block group number. NAMELSAD10: Stands for Name, Legal/Statistical Area Description 2010. A human-readable field for BLKGRPCE10 (Block Groups). MTFCC10: Stands for MAF/TIGER Feature Class Code 2010. For this dataset, G5030 represents the Census Block Group. BLKGRP: The GEOID that identifies a specific block group in each census tract. TYPOLOGYFi: The point system for Block Groups. Lower scores indicate higher levels of demand – including housing values and value appreciation that are above the Rochester average and vulnerabilities to distress that are below average. Higher scores indicate lower levels of demand – including housing values and value appreciation that are below the Rochester average and above presence of distressed or vulnerable properties. Points range from 1.0 to 3.0. For more information on how the points are calculated, view page 16 on the Rochester Citywide Housing Study 2018. Shape_Leng: The built-in geometry field that holds the length of the shape. Shape_Area: The built-in geometry field that holds the area of the shape. Shape_Length: The built-in geometry field that holds the length of the shape. Source: This data comes from the City of Rochester Department of Neighborhood and Business Development.
In 2022, San Mateo, San Francisco, and Santa Clara were the most expensive districts for housing in the San Francisco Bay Area. In San Francisco, the average square footage price of single-family homes exceeded 1,000 U.S. dollars per square foot. Housing in Solano, on the other hand, was most affordable, with the average square footage price for single family homes at 370 U.S. dollars.
How expensive is buying a home in San Francisco? Few metros in the U.S. are more expensive than San Francisco, CA. In 2022, the median sales price of existing single-family homes in San Francisco was about 1.4 million U.S. dollars, making it the second priciest market in the U.S. House prices in the Golden City, were not always so high: in 2014, a two-bedroom house in the Bay Area would sell for less than 500,000 U.S. dollars but since then, the median price has more than doubled.
How much does renting an apartment cost? Despite rents falling in 2020, renting in San Francisco is still far from cheap. Renting a two-bedroom apartment cost close to 4,000 U.S. dollars in 2021. California is one of the least affordable states for renters. In fact, to afford to rent such an apartment, a household needs approximately three full time jobs at minimum wage or two full time jobs at mean wage.
House prices grew year-on-year in most states in the U.S. in the third quarter of 2024. The District of Columbia was the only exception, with a decline of ***** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Hawaii—the state where homes appreciated the most—the increase exceeded ** percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2024, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2024.
The median house price in *****, Atherton, California, was about *** million U.S. dollars. This made it the most expensive zip code in the United States in 2023. ***** Sagaponack, N.Y., was the runner-up with a median house price of about *** million U.S. dollars. Of the ** most expensive zip codes in the United States in 2026, six were in California.
The median sales price of the existing privately owned single-family homes in the United States increased slightly in 2024. The most expensive homes were found in San Jose-Sunnyvale-Santa Clara, CA, where the median sales price was *** million U.S. dollars. Hawaii and Delaware experienced the strongest home appreciation.
West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Among the ** largest cities by population in the United States, Milwaukee, WI, had the largest homes in 2023. The average size of a home was over ***** square feet, while in Portland, OR, the average home was 1070 square feet. Since 1975, U.S. homes have grown substantially bigger.