Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6385 points on August 22, 2025, gaining 0.23% from the previous session. Over the past month, the index has climbed 0.41% and is up 13.32% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.
Live Briefs Investor – US Covering thousands of listed securities and events across 80 news categories, Live Briefs Investor US is specifically designed to keep individual investors and active traders on top of breaking news that is likely to affect their portfolios.
Most of the largest and most respected retail and self-directed brokerage firms in the North America rely on MT Newswires to provide their clients with complete coverage of the financial markets. The Investor service includes timely and insightful commentary on equities, commodities, ETFs, economics, forex, options and fixed income assets throughout the day (6:30 am to 6:30 pm EST).
Every story is ticker-tagged and category-coded to allow for seamless platform integration. US Equities – significant events affecting individual public companies in the US: After-hours and pre-market news, trading activity and technical price level indications; Earnings estimate change alerts; Analyst Rating Changes- the most comprehensive view and coverage of rating changes available anywhere; ETF Power Play – daily trends in ETF trading activity; Mini and detailed sector summaries – pre-market, mid-day, and closing; Market Chatter – real-time coverage of trading desk rumors and breaking news; Zero noise: Only premium, original news and event analysis. Never any fillers (press releases, non-market related news, etc.).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, fell to 6450 points on August 15, 2025, losing 0.29% from the previous session. Over the past month, the index has climbed 2.97% and is up 16.12% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for United States Stock Market Index (US5000) including live quotes, historical charts and news. United States Stock Market Index (US5000) was last updated by Trading Economics this August 22 of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Interest Rates (EMVMACROINTEREST) from Jan 1985 to Jul 2025 about volatility, uncertainty, equity, interest rate, interest, rate, and USA.
https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy
The global Predictive AI in Stock Market sector is projected to witness robust growth in the coming years. The market size is anticipated to reach approximately USD 4,100.6 million by 2034, rising from an estimated USD 831.5 million in 2024. This expansion reflects a strong compound annual growth rate (CAGR) of 17.3% during the forecast period spanning 2025 to 2034.
This growth can be attributed to the increasing reliance on artificial intelligence to enhance trading strategies, forecast market movements, and support data-driven investment decisions. As financial institutions and individual investors continue to seek better accuracy in forecasting and risk management, the adoption of predictive AI tools is expected to accelerate.
In 2024, North America emerged as the leading regional market, accounting for more than 34.1% of the global revenue share. This equated to a market value of USD 283.5 million. The region’s dominance is driven by early technology adoption, well-established financial infrastructure, and the presence of key AI solution providers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US stock market declined as Nvidia shares dropped, affecting major indices. Investors are cautious ahead of the Federal Reserve's policy meeting.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global stock market size will be USD 3645.2 million in 2024. It will expand at a compound annual growth rate (CAGR) of 13% from 2024 to 2031.
North America held the major market share for more than 40% of the global revenue with a market size of USD 1458.1 million in 2024 and will grow at a compound annual growth rate (CAGR) of 11.2% from 2024 to 2031.
Europe accounted for a market share of over 30% of the global revenue with a market size of USD 1093.6 million.
Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 838.4 million in 2024 and will grow at a compound annual growth rate (CAGR) of 15% from 2024 to 2031.
Latin America had a market share of more than 5% of the global revenue with a market size of USD 182.3 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.4% from 2024 to 2031.
Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 72.9 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.7% from 2024 to 2031.
The broker end users held the highest stock market revenue share in 2024.
Market Dynamics of Stock Market
Key Drivers for the Stock Market
Rising Demand for Real-Time Data and Analytics to be an Emerging Market Trend
The increasing need for real-time data and advanced analytics is a significant driver in the stock trading and investing market growth. Investors and traders require up-to-the-minute information on stock prices, market trends, and financial news to make informed decisions quickly. As financial markets become more dynamic and competitive, the ability to access and analyze real-time data becomes crucial for success. Trading applications that offer real-time updates, advanced charting tools, and detailed analytics provide users with a competitive edge by enabling them to react swiftly to market movements. This heightened demand for real-time insights fuels the development and adoption of sophisticated trading platforms that cater to both professional traders and retail investors seeking to maximize their investment opportunities.
Increasing Adoption of Mobile Trading Platforms to Boost Market Growth
The rapid adoption of mobile trading platforms is another key driver for the stock market expansion. With the proliferation of smartphones and mobile internet access, investors are increasingly favoring mobile platforms for their trading activities due to their convenience and accessibility. Mobile trading apps offer users the ability to trade, monitor portfolios, and access financial information on the go, which appeals to both active traders and casual investors. This shift towards mobile platforms is supported by innovations in-app functionality, user experience, and security features. As more investors seek flexibility and real-time engagement with their investments, the demand for sophisticated and user-friendly mobile trading applications continues to rise, propelling market growth.
Restraint Factor for the Stock Market
Stringent Rules and Regulations to Impede the Adoption of Online Trading Platforms
Regulatory compliance and legal challenges are major restraints for the stock trading and investing market share. The financial industry is heavily regulated, with strict rules governing trading practices, data protection, and financial disclosures. Compliance with these regulations requires substantial investment in legal expertise, technology, and administrative processes. Changes in regulations can also introduce uncertainty and additional compliance costs for application providers. For example, regulations such as the Markets in Financial Instruments Directive II (MiFID II) in Europe and the Dodd-Frank Act in the U.S. impose stringent requirements on trading practices and transparency. Failure to adhere to these regulations can result in legal penalties and damage to a company’s reputation, which can inhibit market growth and innovation in trading applications.
Market Volatility and Investor Uncertainty
The stock market is highly sensitive to global economic conditions, geopolitical tensions, interest rate fluctuations, and unexpected events (such as pandemics or wars). This inherent volatility can lead to sharp declines in investor confidence and capital outflows, especially among retai...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This package contains the datasets and source codes used in the PhD thesis entitled Predicting the Brazilian stock market using sentiment analysis, technical indicators and stock prices. The following files are included: File Labeled.zip - financial news labeled in two classes (Positive and Negative), organized to train Sentiment Analysis models. Part of these news were initially presented in [1]. Besides the news in this file, in the related PhD thesis the training dataset was complemented with the labeled news presented in [2]. File Unlabeled.zip - general unlabeled financial news collected during the period 2010-2020 from the following online sources: G1, Folha de São Paulo and Estadão. This file contains news from the Bovespa index and from the following companies: Banco do Brasil, Itau, Gerdau and Ambev. File Stocks.zip - stock prices from the companies Banco do Brasil, Itau, Gerdau, Ambev, and the Bovespa index. The considered period ranges from 2010 to 2020. File Models.zip - contains the source codes of the models used in the PhD thesis (i.e., Multilayer Perceptron, Long Short-Term Memory, Bidirectional Long Short-Term Memory, Convolutional Neural Network, and Support Vector Machines). File Utils.zip - contains the source codes of the preprocessing step designed for the methodology of this work (i.e., load data and generate the word embeddings), alongside with stocks manipulation, and investment evaluation. [1] Carosia, A. E. D. O., Januário, B. A., da Silva, A. E. A., & Coelho, G. P. (2021). Sentiment Analysis Applied to News from the Brazilian Stock Market. IEEE Latin America Transactions, 100. DOI: 10.1109/TLA.2022.9667151 [2] MARTINS, R. F.; PEREIRA, A.; BENEVENUTO, F. An approach to sentiment analysis of web applications in portuguese. Proceedings of the 21st Brazilian Symposium on Multimedia and the Web, ACM, p. 105–112, 2015. DOI: 10.1145/2820426.2820446
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Business Investment And Sentiment (EMVMACROBUS) from Jan 1985 to Jun 2025 about volatility, uncertainty, equity, investment, business, and USA.
FNSPID: A Comprehensive Financial News Dataset in Time Series
Description
FNSPID is a meticulously curated dataset designed to support research and applications in the field of financial news analysis within the context of time-series forecasting. Our dataset encompasses a wide range of financial news articles, providing a rich resource for developing and testing models aimed at understanding market trends, investor sentiment, and other critical financial… See the full description on the dataset page: https://huggingface.co/datasets/Zihan1004/FNSPID.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Understanding the mutual relationships between information flows and social activity in society today is one of the cornerstones of the social sciences. In financial economics, the key issue in this regard is understanding and quantifying how news of all possible types (geopolitical, environmental, social, financial, economic, etc.) affects trading and the pricing of firms in organized stock markets. In this article, we seek to address this issue by performing an analysis of more than 24 million news records provided by Thompson Reuters and of their relationship with trading activity for 206 major stocks in the S&P US stock index. We show that the whole landscape of news that affects stock price movements can be automatically summarized via simple regularized regressions between trading activity and news information pieces decomposed, with the help of simple topic modeling techniques, into their “thematic” features. Using these methods, we are able to estimate and quantify the impacts of news on trading. We introduce network-based visualization techniques to represent the whole landscape of news information associated with a basket of stocks. The examination of the words that are representative of the topic distributions confirms that our method is able to extract the significant pieces of information influencing the stock market. Our results show that one of the most puzzling stylized facts in financial economies, namely that at certain times trading volumes appear to be “abnormally large,” can be partially explained by the flow of news. In this sense, our results prove that there is no “excess trading,” when restricting to times when news is genuinely novel and provides relevant financial information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6467 points on August 22, 2025, gaining 1.52% from the previous session. Over the past month, the index has climbed 1.70% and is up 14.77% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.
Dataset Card for Dataset Name
The FinancialNewsSentiment_26000 dataset comprises 26,000 rows of financial news articles related to the Indian market. It features four columns: URL, Content (scrapped content), Summary (generated using the T5-base model), and Sentiment Analysis (gathered using the GPT add-on for Google Sheets). The dataset is designed for sentiment analysis tasks, providing a comprehensive view of sentiments expressed in financial news.
Dataset… See the full description on the dataset page: https://huggingface.co/datasets/kdave/Indian_Financial_News.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Description
The Twitter Financial News dataset is an English-language dataset containing an annotated corpus of finance-related tweets. This dataset is used to classify finance-related tweets for their sentiment.
The dataset holds 11,932 documents annotated with 3 labels:
sentiments = { "LABEL_0": "Bearish", "LABEL_1": "Bullish", "LABEL_2": "Neutral" }
The data was collected using the Twitter API. The current dataset supports the multi-class classification… See the full description on the dataset page: https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Trade (EMVMACROTRADE) from Jan 1985 to Jul 2025 about volatility, uncertainty, equity, trade, and USA.
US Stock News With Price
A stock news and price dataset design for the alignment between financial news and the market. Please only use for academic purpose.
1. Data Description
date: The date of the news published. stock: The symbol of the stocks the news related to. (checked by whether title or content has the company information. title: The title of the news. content: The content of the news. trading_date: Here is the assumed trading date, which should be the… See the full description on the dataset page: https://huggingface.co/datasets/oliverwang15/us_stock_news_with_price.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Equity Market Volatility Tracker: Macroeconomic News and Outlook: Consumer Spending And Sentiment (EMVMACROCONSUME) from Jan 1985 to Jun 2025 about volatility, uncertainty, equity, PCE, consumption expenditures, consumption, personal, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6385 points on August 22, 2025, gaining 0.23% from the previous session. Over the past month, the index has climbed 0.41% and is up 13.32% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.