100+ datasets found
  1. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  2. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  3. 2019-2024 US Stock Market Data

    • kaggle.com
    zip
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saket Kumar (2024). 2019-2024 US Stock Market Data [Dataset]. https://www.kaggle.com/datasets/saketk511/2019-2024-us-stock-market-data
    Explore at:
    zip(159095 bytes)Available download formats
    Dataset updated
    Feb 4, 2024
    Authors
    Saket Kumar
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset encapsulates a detailed examination of market dynamics over a five-year period, focusing on the fluctuation of prices and trading volumes across a diversified portfolio. It covers various sectors including energy commodities like natural gas and crude oil, metals such as copper, platinum, silver, and gold, cryptocurrencies including Bitcoin and Ethereum, and key stock indices and companies like the S&P 500, Nasdaq 100, Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta Platforms. This dataset serves as a valuable resource for analyzing trends and patterns in global markets.

    Date: The date of the recorded data, formatted as DD-MM-YYYY. Natural_Gas_Price: Price of natural gas in USD per million British thermal units (MMBtu). Natural_Gas_Vol.: Trading volume of natural gas Crude_oil_Price: Price of crude oil in USD per barrel. Crude_oil_Vol.: Trading volume of crude oil Copper_Price: Price of copper in USD per pound. Copper_Vol.: Trading volume of copper Bitcoin_Price: Price of Bitcoin in USD. Bitcoin_Vol.: Trading volume of Bitcoin Platinum_Price: Price of platinum in USD per troy ounce. Platinum_Vol.: Trading volume of platinum Ethereum_Price: Price of Ethereum in USD. Ethereum_Vol.: Trading volume of Ethereum S&P_500_Price: Price index of the S&P 500. Nasdaq_100_Price: Price index of the Nasdaq 100. Nasdaq_100_Vol.: Trading volume for the Nasdaq 100 index Apple_Price: Stock price of Apple Inc. in USD. Apple_Vol.: Trading volume of Apple Inc. stock Tesla_Price: Stock price of Tesla Inc. in USD. Tesla_Vol.: Trading volume of Tesla Inc. stock Microsoft_Price: Stock price of Microsoft Corporation in USD. Microsoft_Vol.: Trading volume of Microsoft Corporation stock Silver_Price: Price of silver in USD per troy ounce. Silver_Vol.: Trading volume of silver Google_Price: Stock price of Alphabet Inc. (Google) in USD. Google_Vol.: Trading volume of Alphabet Inc. stock Nvidia_Price: Stock price of Nvidia Corporation in USD. Nvidia_Vol.: Trading volume of Nvidia Corporation stock Berkshire_Price: Stock price of Berkshire Hathaway Inc. in USD. Berkshire_Vol.: Trading volume of Berkshire Hathaway Inc. stock Netflix_Price: Stock price of Netflix Inc. in USD. Netflix_Vol.: Trading volume of Netflix Inc. stock Amazon_Price: Stock price of Amazon.com Inc. in USD. Amazon_Vol.: Trading volume of Amazon.com Inc. stock Meta_Price: Stock price of Meta Platforms, Inc. (formerly Facebook) in USD. Meta_Vol.: Trading volume of Meta Platforms, Inc. stock Gold_Price: Price of gold in USD per troy ounce. Gold_Vol.: Trading volume of gold

    Image attribute : Image by Freepik

  4. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market?&sa=u&ei=oscuvi_vm87uaom-gzah&ved=0cdcqfjag&usg=afqjcnft8xo94npdcodluglxnqi05ysxta
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Nov 28, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6849 points on November 28, 2025, gaining 0.54% from the previous session. Over the past month, the index has declined 0.60%, though it remains 13.54% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on November of 2025.

  5. Weekly development Dow Jones Industrial Average Index 2020-2025

    • statista.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly development Dow Jones Industrial Average Index 2020-2025 [Dataset]. https://www.statista.com/statistics/1104278/weekly-performance-of-djia-index/
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Mar 2, 2025
    Area covered
    United States
    Description

    The Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.

  6. s

    US Stock Market Outlook: 15th Oct 2025: Dow Jones, Nasdaq, and S&P 500 Show...

    • smartinvestello.com
    html
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Investello (2025). US Stock Market Outlook: 15th Oct 2025: Dow Jones, Nasdaq, and S&P 500 Show Strength Amid Caution Signals - Data Table [Dataset]. https://smartinvestello.com/us-stock-market-outlook-15th-oct-2025/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 15, 2025
    Dataset authored and provided by
    Smart Investello
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset extracted from the post US Stock Market Outlook: 15th Oct 2025: Dow Jones, Nasdaq, and S&P 500 Show Strength Amid Caution Signals on Smart Investello.

  7. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +5more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg/survey
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6825 points on December 2, 2025, gaining 0.18% from the previous session. Over the past month, the index has declined 0.39%, though it remains 12.82% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  8. US Stock Market and Commodities Data (2020-2024)

    • kaggle.com
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Ehsan (2024). US Stock Market and Commodities Data (2020-2024) [Dataset]. https://www.kaggle.com/datasets/muhammadehsan02/us-stock-market-and-commodities-data-2020-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 1, 2024
    Dataset provided by
    Kaggle
    Authors
    Muhammad Ehsan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US_Stock_Data.csv dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.

    Key Features and Data Structure

    The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:

    • Commodities: Prices and trading volumes for natural gas, crude oil, copper, platinum, silver, and gold.
    • Cryptocurrencies: Prices and volumes for Bitcoin and Ethereum, including detailed 5-minute interval data for Bitcoin.
    • Stock Market Indices: Data for major indices such as the S&P 500 and Nasdaq 100.
    • Individual Stocks: Prices and volumes for major companies including Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta.

    The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.

    Applications and Usability

    This dataset is highly versatile and can be utilized for various financial research purposes:

    • Market Analysis: Track the performance of key assets, compare volatility, and study correlations between different financial instruments.
    • Risk Assessment: Analyze the impact of commodity price movements on related stock prices and evaluate market risks.
    • Educational Use: Serve as a resource for teaching market trends, asset correlation, and the effects of global events on financial markets.

    The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.

    Acknowledgements:

    This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.

  9. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. F

    US Stock News

    • finazon.io
    json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finazon, US Stock News [Dataset]. https://finazon.io/dataset/benzinga_news
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    Finazon
    License

    https://finazon.io/assets/files/Finazon_Terms_of_Service.pdfhttps://finazon.io/assets/files/Finazon_Terms_of_Service.pdf

    Dataset funded by
    Finazon
    Description

    US Stock News, offered by Benzinga, is the gateway to over 200 full-length stories and 1000 original content pieces created daily by an in-house editorial team. News events cover everything from M&A deals to Federal Reserve announcements.

    A decisive advantage of this data feed is its structural format. REST API lets you filter news by date, company ticker, CIK, ISIN, and other identifiers. Response contains the text URL, image URL, tags, author, title, and timestamps. In addition to the API, news can be accessed via spreadsheet add-ons.

    The primary price indicator for companies is the number of users who will be using or seeing earnings data. Individual, non-commercial users can always choose 0. No agreements or licenses are required to be signed. Finazon partnered with Benzinga to provide lower rates and let users enjoy the marketplace's synergy.

  11. US Stock Market Giants: Top Companies Stocks Data

    • kaggle.com
    zip
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azhar Saleem (2024). US Stock Market Giants: Top Companies Stocks Data [Dataset]. https://www.kaggle.com/datasets/azharsaleem/us-stock-market-giants-top-companies-stocks-data
    Explore at:
    zip(4730245 bytes)Available download formats
    Dataset updated
    Nov 8, 2024
    Authors
    Azhar Saleem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Stock Data of Top USA Companies: Apple, Tesla, Amazon

    👨‍💻 Author: Azhar Saleem

    "https://github.com/azharsaleem18" target="_blank"> https://img.shields.io/badge/GitHub-Profile-blue?style=for-the-badge&logo=github" alt="GitHub Profile"> "https://www.kaggle.com/azharsaleem" target="_blank"> https://img.shields.io/badge/Kaggle-Profile-blue?style=for-the-badge&logo=kaggle" alt="Kaggle Profile"> "https://www.linkedin.com/in/azhar-saleem/" target="_blank"> https://img.shields.io/badge/LinkedIn-Profile-blue?style=for-the-badge&logo=linkedin" alt="LinkedIn Profile">
    "https://www.youtube.com/@AzharSaleem19" target="_blank"> https://img.shields.io/badge/YouTube-Profile-red?style=for-the-badge&logo=youtube" alt="YouTube Profile"> "https://www.facebook.com/azhar.saleem1472/" target="_blank"> https://img.shields.io/badge/Facebook-Profile-blue?style=for-the-badge&logo=facebook" alt="Facebook Profile"> "https://www.tiktok.com/@azhar_saleem18" target="_blank"> https://img.shields.io/badge/TikTok-Profile-blue?style=for-the-badge&logo=tiktok" alt="TikTok Profile">
    "https://twitter.com/azhar_saleem18" target="_blank"> https://img.shields.io/badge/Twitter-Profile-blue?style=for-the-badge&logo=twitter" alt="Twitter Profile"> "https://www.instagram.com/azhar_saleem18/" target="_blank"> https://img.shields.io/badge/Instagram-Profile-blue?style=for-the-badge&logo=instagram" alt="Instagram Profile"> "mailto:azharsaleem6@gmail.com"> https://img.shields.io/badge/Email-Contact%20Me-red?style=for-the-badge&logo=gmail" alt="Email Contact">

    Dataset Description

    This dataset provides daily stock data for some of the top companies in the USA stock market, including major players like Apple, Microsoft, Amazon, Tesla, and others. The data is collected from Yahoo Finance, covering each company’s historical data from its starting date until today. This comprehensive dataset enables in-depth analysis of key financial indicators and stock trends for each company, making it valuable for multiple applications.

    Column Descriptions

    The dataset contains the following columns, consistent across all companies:

    • Date: The date of the stock data entry.
    • Open: The stock's opening price for the day.
    • High: The highest price reached during the trading day.
    • Low: The lowest price during the trading day.
    • Close: The stock’s closing price for the day.
    • Volume: The total number of shares traded on that day.
    • Dividends: Any dividends paid out on that day.
    • Stock Splits: Records stock split events, if any, on that day.

    Potential Use Cases

    1. Machine Learning & Deep Learning:

      • Stock Price Prediction: Use historical prices to train models for forecasting future stock prices.
      • Sentiment Analysis and Price Correlation: Combine with external sentiment data to predict price movements based on market sentiment.
      • Anomaly Detection: Detect unusual price patterns or volume spikes using classification algorithms.
    2. Data Science:

      • Trend Analysis: Identify long-term trends for each company or compare trends between companies.
      • Volatility Analysis: Calculate volatility to assess risk and return patterns over time.
      • Correlation Analysis: Compare stock performance across companies to study market relationships.
    3. Data Analysis:

      • Historical Performance: Review historical data to understand growth trends, market impact of stock splits, and dividends.
      • Seasonal Patterns: Analyze data for seasonal trends or recurring patterns across years.
      • Investment Strategy Backtesting: Test various investment strategies based on historical data to assess potential profitability.
    4. Financial Research:

      • Economic Impact Studies: Investigate how major events affected stock prices across top companies.
      • Sector-Specific Analysis: Identify performance differences across sectors, such as tech, healthcare, and retail.

    This dataset is a powerful tool for analysts, researchers, and financial enthusiasts, offering versatility across multiple domains from stock analysis to algorithmic trading models.

  12. Monthly development Dow Jones Industrial Average Index 2018-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Monthly development Dow Jones Industrial Average Index 2018-2025 [Dataset]. https://www.statista.com/statistics/261690/monthly-performance-of-djia-index/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jun 2025
    Area covered
    United States
    Description

    The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.

  13. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-12-02 to 2025-12-01 about stock market, average, industry, and USA.

  14. U

    US Capital Market Exchange Ecosystem Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). US Capital Market Exchange Ecosystem Report [Dataset]. https://www.marketreportanalytics.com/reports/us-capital-market-exchange-ecosystem-99588
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global, United States
    Variables measured
    Market Size
    Description

    The US capital market exchange ecosystem, encompassing exchanges like the NYSE, NASDAQ, and Cboe, is a robust and dynamic sector experiencing significant growth. Driven by factors such as increasing retail investor participation fueled by technological advancements and democratization of access to financial markets (e.g., through commission-free trading apps), and a surge in IPOs and other capital-raising activities by both established and emerging companies, the market demonstrates substantial expansion potential. The diversification of financial instruments beyond traditional equities and debt into areas like derivatives and ETFs further contributes to market expansion. Institutional investors, including hedge funds and mutual funds, continue to play a pivotal role, driving trading volume and liquidity. While regulatory changes and macroeconomic uncertainties pose potential restraints, the overall outlook remains positive, with a projected CAGR exceeding 8% for the forecast period 2025-2033. Technological innovations, including AI-driven trading algorithms and blockchain technology for enhanced security and transparency, are reshaping the landscape, promoting efficiency and attracting further investment. The segment breakdown reveals a substantial contribution from both primary and secondary markets, with equity trading likely holding a larger market share compared to debt instruments in the US context. Regional analysis highlights the dominance of North America, particularly the United States, due to its mature financial markets and large pool of both retail and institutional investors. However, other regions, including Europe and Asia-Pacific, are demonstrating increasing participation and growth, fueled by economic expansion and the rising middle class in emerging economies. The competitive landscape is characterized by established players alongside emerging fintech companies offering innovative trading platforms and services. This competition fosters innovation and enhances market efficiency, benefiting both investors and businesses seeking capital. The ongoing evolution of the ecosystem necessitates ongoing adaptation and strategic planning for all participants, ensuring relevance and profitability in a rapidly changing environment. Notable trends are: Increasing Capitalization in Equity Market Driving the Capital Market.

  15. Stock Market Data North America ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data North America ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-north-america-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Greenland, Guatemala, Honduras, Bermuda, El Salvador, United States of America, Belize, Saint Pierre and Miquelon, Mexico, Panama, North America
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  16. Share of Americans investing money in the stock market 1999-2025

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2025 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2025
    Area covered
    United States
    Description

    In 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  17. Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Switzerland, and UK), APAC (China, Hong Kong, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/securities-exchanges-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, United States
    Description

    Snapshot img

    Securities Exchanges Market Size 2025-2029

    The securities exchanges market size is forecast to increase by USD 56.67 billion at a CAGR of 12.5% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing demand for investment opportunities. This trend is fueled by a global economic recovery and a rising interest in various asset classes, particularly in emerging markets. Another key driver is the increasing focus on sustainable and environmental, social, and governance (ESG) investing. This shift reflects a growing awareness of the importance of long-term value creation and the role of exchanges in facilitating socially responsible investments. This trend is driven by the expanding securities business units, including stocks, bonds, mutual funds, and other securities, which cater to the needs of investment firms and individual investors. However, the market is not without challenges. Increasing market volatility poses a significant risk for exchanges and their clients.
    Furthermore, the rapid digitization of trading and the emergence of alternative trading platforms are disrupting traditional exchange business models. To navigate these challenges, exchanges must adapt by investing in technology, expanding their product offerings, and building strong regulatory frameworks. Data analytics and big data are also crucial tools for e-brokerage firms to gain insights and make informed decisions. By doing so, they can capitalize on the market's growth potential and maintain their competitive edge. Geopolitical tensions, economic instability, and regulatory changes can all contribute to market fluctuations and uncertainty.
    

    What will be the Size of the Securities Exchanges Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic market, financial instrument classification plays a crucial role in facilitating efficient trade matching through advanced execution quality metrics and order book liquidity. Quantitative trading models leverage options clearing corporation data to optimize portfolio holdings, while trade matching engines utilize high-speed data storage solutions and portfolio optimization algorithms to minimize latency and enhance market depth indicators. Data center infrastructure and network bandwidth capacity are essential components for supporting complex algorithmic trading strategies, including latency reduction and price volatility forecasting. Market impact measurement and risk assessment methodologies are integral to managing market impact and mitigating fraud, ensuring regulatory compliance through transaction reporting standards and regulatory compliance software.

    Exchange traded funds (ETFs) have gained popularity, necessitating robust quote dissemination systems and trade surveillance analytics. Server virtualization and cybersecurity threat mitigation strategies further strengthen the market's resilience, enabling seamless integration of data-driven quantitative models and sophisticated fraud detection algorithms. Additionally, users of online trading platforms can easily monitor the performance of their assets thanks to real-time stock data.

    How is this Securities Exchanges Industry segmented?

    The securities exchanges industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Service
    
      Market platforms
      Capital access platforms
      Others
    
    
    Trade Finance Instruments
    
      Equities
      Derivatives
      Bonds
      Exchange-traded funds
      Others
    
    
    Type
    
      Large-cap exchanges
      Mid-cap exchanges
      Small-cap exchanges
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Switzerland
        UK
    
    
      APAC
    
        China
        Hong Kong
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Service Insights

    The Market platforms segment is estimated to witness significant growth during the forecast period. The market is characterized by advanced technologies and systems that enable efficient price discovery, manage settlement risk, and ensure regulatory compliance. Market platforms, which include trading platforms, order-matching systems, and market data dissemination, hold the largest share of the market. These platforms facilitate the buying and selling of securities, providing market liquidity and transparency. Real-time market surveillance and high-frequency trading infrastructure are crucial components, ensuring fair and orderly markets and enabling efficient trade execution. Financial modeling techniques and algorithmic trading platforms optimize trading strategies, while electronic communication networks and central counterparty clearing minimize r

  18. US Stocks Dataset

    • kaggle.com
    zip
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Atif Latif (2024). US Stocks Dataset [Dataset]. https://www.kaggle.com/datasets/matiflatif/us-stocks-datasetby-atif
    Explore at:
    zip(126060 bytes)Available download formats
    Dataset updated
    Oct 5, 2024
    Authors
    M Atif Latif
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    US Stock Market Data (21st November 2023 – 2nd February 2024)

    Overview

    This dataset provides detailed historical data on the US stock market, covering the period from 21st November 2023 to 2nd February 2024. It includes daily performance metrics for major stocks and indices, enabling investors, analysts, and researchers to study short-term market trends, fluctuations, and patterns.

    Dataset Contents

    The dataset contains the following key attributes for each trading day:

    Date: The trading date.

    Ticker: Stock ticker symbol (e.g., AAPL for Apple, MSFT for Microsoft).

    Open Price: The price at which the stock opened for trading.

    Close Price: The price at which the stock closed for trading . High Price: The highest price reached during the trading session.

    Low Price: The lowest price reached during the trading session.

    Adjusted Close Price: The closing price adjusted for splits and dividend payouts.

    Trading Volume: The total number of shares traded on that day.

    Highlights

    Time Period: Covers daily data for over two months of trading activity.

    Market Scope: Includes data from a diverse set of stocks, industries, and sectors, reflecting the broader US market trends.

    Indices and Major Stocks: Tracks key indices (e.g., S&P 500, NASDAQ) and major stocks across various sectors .

    Potential Applications

    Analyzing short-term market performance trends. Developing trading strategies or backtesting investment models. Exploring the impact of macroeconomic events on stock performance. Studying sector-wise performance in the US stock market.

    Data Source

    The data has been sourced from publicly available market records, ensuring reliability and accuracy. Each data point represents an official trading record from the respective exchange.

    Usage Notes

    The dataset is intended for educational, analytical, and research purposes only. Users should be mindful of potential market anomalies or external factors influencing data during this time frame.

    Acknowledgments

    Special thanks to the organizations and platforms that make financial market data accessible for analysis and research.

  19. Historical US Stock Market Data

    • kaggle.com
    zip
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris (2025). Historical US Stock Market Data [Dataset]. https://www.kaggle.com/datasets/chrisjackson7/historical-stock-market-data
    Explore at:
    zip(307459139 bytes)Available download formats
    Dataset updated
    Oct 12, 2025
    Authors
    Chris
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides a comprehensive, pre-processed collection of U.S. stock market data, specifically curated for quantitative analysis, financial modeling, and machine learning applications focused on volatility and asset pricing. It is optimized to include essential price and volume change metrics, along with market fundamentals, to facilitate efficient research.

    The data is collected into previous 1000 & 3500 market open days since 10/12/2025. Note for a stock to be in each dataset it must have at least 1000 & 3500 days of history. The source data is located at https://stooq.com/db/h/ and an extract script can be found in my accompanying notebook.

    📊 Key Data Fields & Structure

    The time-series data files (log_change.pkl) are optimized for quantitative modeling, where raw prices are replaced by daily change metrics to capture volatility and momentum efficiently.

    Time-Series (3D NumPy Array Structure)

    The 3D array (trimmed_market_data_log_change_1000.pkl) is structured as (Days, Features, Tickers) and contains the following 5 features per day:

    ticker
    
    date
    
    log_Ret (Close-to-Close): Logarithmic return, ln(Closet​/Closet−1​). Used for overall volatility and total return.
    
    log_Vol: Log change in volume, ln(Volt​/Volt−1​). Used to measure trading activity change.
    
    OC_Log_Change (Open-to-Close): Intraday logarithmic return, ln(Closet​/Opent​). Used to isolate intraday volatility from overnight gaps.
    
    HL_Range_Pct: Daily High-Low range normalized by previous close, (Hight​−Lowt​)/Closet−1​. Used as a proxy for realized daily volatility (Parkinson-like measure).
    

    Fundamentals (market_fundamentals.csv)

    This file contains point in time cross-sectional data, including fields like:

    Ticker
    
    Company Name (e.g., Agilent Technologies, Inc.)
    
    marketCap
    
    sector
    
    industry
    

    Read using pd.read_pickle('')

    💡 Potential Use Cases

    Volatility Forecasting: Use the historical time-series features (Log_Ret, HL_Range_Pct) to train models (e.g., GARCH, machine learning) to predict future volatility.
    
    Alpha Generation: Develop trading signals based on the cross-sectional fundamentals combined with recent momentum/volatility changes.
    
    Anomaly Detection: Use the difference between overnight return (implied by CC minus OC) to detect potential mispricings or significant after-hours news impact.
    
    Factor Modeling: Construct stock factors based on market capitalization, price levels, and the novel volatility features provided.
    
  20. F

    Index of Preferred Stock Prices, New York Stock Exchange for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Preferred Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11008USM322NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Index of Preferred Stock Prices, New York Stock Exchange for United States (M11008USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market

United States Stock Market Index Data

United States Stock Market Index - Historical Dataset (1928-01-03/2025-12-02)

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1928 - Dec 2, 2025
Area covered
United States
Description

The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

Search
Clear search
Close search
Google apps
Main menu