43 datasets found
  1. United States Market Capitalization: % of GDP

    • ceicdata.com
    Updated Feb 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). United States Market Capitalization: % of GDP [Dataset]. https://www.ceicdata.com/en/indicator/united-states/market-capitalization--nominal-gdp
    Explore at:
    Dataset updated
    Feb 15, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    United States
    Description

    Key information about United States Market Capitalization: % of GDP

    • United States Market Capitalization accounted for 155.0 % of its Nominal GDP in Dec 2022, compared with a percentage of 205.0 % in the previous year
    • US Market Capitalization: % Nominal GDP is updated yearly, available from Dec 1975 to Dec 2022
    • The data reached an all-time high of 205.0 % in Dec 2021 and a record low of 36.7 % in Dec 1978

    The World Bank provides annual Market Capitalization as % of Nominal GDP. Market Capitalization includes domestic companies listed at the end of the year and excludes investment companies, mutual funds and other collective investment vehicles

  2. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +15more
    csv, excel, json, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Mar 27, 2025
    Area covered
    United States
    Description

    The main stock market index in the United States (US500) decreased 176 points or 2.99% since the beginning of 2025, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on March of 2025.

  3. Annual development S&P 500 Index 1986-2024

    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual development S&P 500 Index 1986-2024 [Dataset]. https://www.statista.com/statistics/261713/changes-of-the-sundp-500-during-the-us-election-years-since-1928/
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Standard & Poor’s (S&P) 500 Index is an index of 500 leading publicly traded companies in the United States. In 2021, the index value closed at 4,766.18 points, which was the second highest value on record despite the economic effects of the global coronavirus (COVID-19) pandemic. In 2023, the index values closed at 4,769.83, the highest value ever recorded. What is the S&P 500? The S&P 500 was established in 1860 and expanded to its present form of 500 stocks in 1957. It tracks the price of stocks on the major stock exchanges in the United States, distilling their performance down to a single number that investors can use as a snapshot of the economy’s performance at a given moment. This snapshot can be explored further. For example, the index can be examined by industry sector, which gives a more detailed illustration of the economy. Other measures Being a stock market index, the S&P 500 only measures equities performance. In addition to other stock market indices, analysts will look to other indicators such as GDP growth, unemployment rates, and projected inflation. Similarly, since these indicators say something about the economic future, stock market investors will use these indicators to speculate on the stocks in the S&P 500.

  4. I

    India Market Capitalization: % of GDP

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). India Market Capitalization: % of GDP [Dataset]. https://www.ceicdata.com/en/indicator/india/market-capitalization--nominal-gdp
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2013 - Dec 1, 2024
    Area covered
    India
    Description

    Key information about India Market Capitalization: % of GDP

    • India Market Capitalization accounted for 133.5 % of its Nominal GDP in Dec 2024, compared with a percentage of 120.9 % in the previous year
    • India Market Capitalization: % Nominal GDP is updated yearly, available from Dec 1993 to Dec 2024
    • The data reached an all-time high of 146.4 % in Dec 2007 and a record low of 23.0 % in Dec 2001

    CEIC calculates annual Market Capitalization as % of Nominal GDP from monthly Market Capitalization and annual Nominal GDP. BSE Limited provides Market Capitalization in local currency. The Ministry of Statistics and Programme Implementation provides Nominal GDP in local currency. Nominal GDP is reported in annual frequency, ending in March of each year.


    Further information about India Market Capitalization: % of GDP

    • In the latest reports, SENSEX recorded a daily P/E ratio of 20.6 in Mar 2025
    • Sensitive 30 (Sensex) closed at 73,198.1 points in Feb 2025

  5. T

    United States GDP

    • tradingeconomics.com
    • sv.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States GDP [Dataset]. https://tradingeconomics.com/united-states/gdp
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    United States
    Description

    The Gross Domestic Product (GDP) in the United States was worth 27720.71 billion US dollars in 2023, according to official data from the World Bank. The GDP value of the United States represents 26.29 percent of the world economy. This dataset provides - United States GDP - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  6. Annual GDP and real GDP for the United States 1929-2022

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Annual GDP and real GDP for the United States 1929-2022 [Dataset]. https://www.statista.com/statistics/1031678/gdp-and-real-gdp-united-states-1930-2019/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    On October 29, 1929, the U.S. experienced the most devastating stock market crash in it's history. The Wall Street Crash of 1929 set in motion the Great Depression, which lasted for twelve years and affected virtually all industrialized countries. In the United States, GDP fell to it's lowest recorded level of just 57 billion U.S dollars in 1933, before rising again shortly before the Second World War. After the war, GDP fluctuated, but it increased gradually until the Great Recession in 2008. Real GDP Real GDP allows us to compare GDP over time, by adjusting all figures for inflation. In this case, all numbers have been adjusted to the value of the US dollar in FY2012. While GDP rose every year between 1946 and 2008, when this is adjusted for inflation it can see that the real GDP dropped at least once in every decade except the 1960s and 2010s. The Great Recession Apart from the Great Depression, and immediately after WWII, there have been two times where both GDP and real GDP dropped together. The first was during the Great Recession, which lasted from December 2007 until June 2009 in the US, although its impact was felt for years after this. After the collapse of the financial sector in the US, the government famously bailed out some of the country's largest banking and lending institutions. Since recovery began in late 2009, US GDP has grown year-on-year, and reached 21.4 trillion dollars in 2019. The coronavirus pandemic and the associated lockdowns then saw GDP fall again, for the first time in a decade. As economic recovery from the pandemic has been compounded by supply chain issues, inflation, and rising global geopolitical instability, it remains to be seen what the future holds for the U.S. economy.

  7. T

    Iran, Islamic Republic of - Stock Market Total Value Traded to GDP for...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Iran, Islamic Republic of - Stock Market Total Value Traded to GDP for Islamic Republic of Iran [Dataset]. https://tradingeconomics.com/united-states/stock-market-total-value-traded-to-gdp-for-islamic-republic-of-iran-fed-data.html
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Mar 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Iran
    Description

    Iran, Islamic Republic of - Stock Market Total Value Traded to GDP for Islamic Republic of Iran was 3.37% in January of 2017, according to the United States Federal Reserve. Historically, Iran, Islamic Republic of - Stock Market Total Value Traded to GDP for Islamic Republic of Iran reached a record high of 6.90 in January of 2014 and a record low of 0.30 in January of 1975. Trading Economics provides the current actual value, an historical data chart and related indicators for Iran, Islamic Republic of - Stock Market Total Value Traded to GDP for Islamic Republic of Iran - last updated from the United States Federal Reserve on March of 2025.

  8. Dow Jones U.S. Select Aerospace & Defense Index: Soaring to New Heights or...

    • kappasignal.com
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones U.S. Select Aerospace & Defense Index: Soaring to New Heights or Facing Turbulence? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-us-select-aerospace-defense_22.html
    Explore at:
    Dataset updated
    Apr 22, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones U.S. Select Aerospace & Defense Index: Soaring to New Heights or Facing Turbulence?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. US Dollar Index: Bullish Break or Bearish Trap? (Forecast)

    • kappasignal.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). US Dollar Index: Bullish Break or Bearish Trap? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/us-dollar-index-bullish-break-or.html
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    US Dollar Index: Bullish Break or Bearish Trap?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Workers' Compensation & Other Insurance Funds in the US - Market Research...

    • ibisworld.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Workers' Compensation & Other Insurance Funds in the US - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/united-states/market-research-reports/workers-compensation-other-insurance-funds-industry/
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    IBISWorld
    Time period covered
    2015 - 2030
    Description

    Workers’ compensation and other insurance funds businesses have experienced significant changes in recent years, largely driven by economic fluctuations and shifts in investment income. The crash of the US economy in 2020 due to pandemic-related restrictions placed immense pressure on the industry. Business formation plunged and unemployment soared, resulting in a diminished customer base for insurance funds and a steep drop in revenue. Regardless, the Federal Reserve's injection of liquidity into the financial system propelled stock prices upward, boosting investment income for insurance providers. This increase in investment income provided some relief for providers, enabling them to cover expenses and sustain profits despite revenue losses. The relaxation of COVID-19 restrictions spurred economic recovery in 2021, driving unemployment down and corporate profit up. This positive economic climate increased demand for insurance services and enhanced investment income due to robust stock market conditions. However, since 2022, inflation has wreaked havoc, causing businesses and organizations to slash investments in insurance funds amid soaring prices. More recently, rising interest rates have reduced downstream demand due to the emergence of recessionary fears, but revenue and profit have expanded because of growing returns on fixed-income products. Overall, revenue for workers’ compensation and other insurance funds has inched downward at a CAGR of 0.2% over the past five years, reaching $56.6 billion in 2025. This includes a 0.5% rise in revenue in that year. Looking ahead, providers are poised for moderate growth over the next five years. As the US economy stabilizes, with solid GDP growth and potential increases in business formation and employment, the customer base for insurance funds is likely to expand. These favorable economic conditions should bolster consumer confidence and investment in the stock market, leading to greater investment income for the industry. Nonetheless, larger players are expected to dominate, given their ability to invest in cutting-edge technologies like AI for predicting claim risks and optimizing business operations. Smaller providers may face intensified internal competition, prompting some to exit the market, while others could focus on niche offerings or invest in technological advancements to remain viable and competitive. Overall, revenue for workers’ compensation and other insurance funds is expected to expand at a CAGR of 1.3% over the next five years, reaching $60.3 billion in 2030.

  11. f

    Descriptive statistics of the model (7).

    • plos.figshare.com
    xls
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minh Phuoc-Bao Tran; Duc Hong Vo (2023). Descriptive statistics of the model (7). [Dataset]. http://doi.org/10.1371/journal.pone.0290680.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Minh Phuoc-Bao Tran; Duc Hong Vo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study examines the market return spillovers from the US market to 10 Asia-Pacific stock markets, accounting for approximately 91 per cent of the region’s GDP from 1991 to 2022. Our findings indicate an increased return spillover from the US stock market to the Asia-Pacific stock market over time, particularly after major global events such as the 1997 Asian and the 2008 global financial crises, the 2015 China stock market crash, and the COVID-19 pandemic. The 2008 global financial crisis had the most substantial impact on these events. In addition, the findings also indicate that US economic policy uncertainty and US geopolitical risk significantly affect spillovers from the US to the Asia-Pacific markets. In contrast, the geopolitical risk of Asia-Pacific countries reduces these spillovers. The study also highlights the significant impact of information and communication technologies (ICT) on these spillovers. Given the increasing integration of global financial markets, the findings of this research are expected to provide valuable policy implications for investors and policymakers.

  12. Is the Dow Jones U.S. Oil & Gas Index Poised for Growth? (Forecast)

    • kappasignal.com
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is the Dow Jones U.S. Oil & Gas Index Poised for Growth? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/is-dow-jones-us-oil-gas-index-poised.html
    Explore at:
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the Dow Jones U.S. Oil & Gas Index Poised for Growth?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Can Dow Jones U.S. Select Telecommunications Keep Its Lead? (Forecast)

    • kappasignal.com
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Can Dow Jones U.S. Select Telecommunications Keep Its Lead? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/can-dow-jones-us-select.html
    Explore at:
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can Dow Jones U.S. Select Telecommunications Keep Its Lead?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Tech Sector Outlook: Bullish Trend Expected for Dow Jones U.S. Technology...

    • kappasignal.com
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Tech Sector Outlook: Bullish Trend Expected for Dow Jones U.S. Technology Index. (Forecast) [Dataset]. https://www.kappasignal.com/2025/03/tech-sector-outlook-bullish-trend.html
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Tech Sector Outlook: Bullish Trend Expected for Dow Jones U.S. Technology Index.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. F

    Money Market Funds; Total Financial Assets, Level

    • fred.stlouisfed.org
    json
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Money Market Funds; Total Financial Assets, Level [Dataset]. https://fred.stlouisfed.org/series/MMMFFAQ027S
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 13, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Money Market Funds; Total Financial Assets, Level (MMMFFAQ027S) from Q4 1945 to Q4 2024 about MMMF, IMA, financial, assets, and USA.

  16. Change in GDP in the U.S and European countries 1929-1938

    • statista.com
    Updated Dec 31, 1993
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (1993). Change in GDP in the U.S and European countries 1929-1938 [Dataset]. https://www.statista.com/statistics/1237792/europe-us-gdp-change-great-depression/
    Explore at:
    Dataset updated
    Dec 31, 1993
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe, United States
    Description

    Between the Wall Street Crash of 1929 and the end of the Great Depression in the late 1930s, the Soviet Union saw the largest growth in its gross domestic product, growing by more than 70 percent between 1929 and 1937/8. The Great Depression began in 1929 in the United States, following the stock market crash in late October. The inter-connectedness of the global economy, particularly between North America and Europe, then came to the fore as the collapse of the U.S. economy exposed the instabilities of other industrialized countries. In contrast, the economic isolation of the Soviet Union and its detachment from the capitalist system meant that it was relatively shielded from these events. 1929-1932 The Soviet Union was one of just three countries listed that experienced GDP growth during the first three years of the Great Depression, with Bulgaria and Denmark being the other two. Bulgaria experienced the largest GDP growth over these three years, increasing by 27 percent, although it was also the only country to experience a decline in growth over the second period. The majority of other European countries saw their GDP growth fall in the depression's early years. However, none experienced the same level of decline as the United States, which dropped by 28 percent. 1932-1938 In the remaining years before the Second World War, all of the listed countries saw their GDP grow significantly, particularly Germany, the Soviet Union, and the United States. Coincidentally, these were the three most powerful nations during the Second World War. This recovery was primarily driven by industrialization, and, again, the U.S., USSR, and Germany all experienced the highest level of industrial growth between 1932 and 1938.

  17. Biggest companies in the world by market value 2024

    • statista.com
    • wwwexpressvpn.online
    • +1more
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Biggest companies in the world by market value 2024 [Dataset]. https://www.statista.com/statistics/263264/top-companies-in-the-world-by-market-capitalization/
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 17, 2024
    Area covered
    World
    Description

    With a market capitalization of 3.12 trillion U.S. dollars as of May 2024, Microsoft was the world’s largest company that year. Rounding out the top five were some of the world’s most recognizable brands: Apple, NVIDIA, Google’s parent company Alphabet, and Amazon. Saudi Aramco led the ranking of the world's most profitable companies in 2023, with a pre-tax income of nearly 250 billion U.S. dollars. How are market value and market capitalization determined? Market value and market capitalization are two terms frequently used – and confused - when discussing the profitability and viability of companies. Strictly speaking, market capitalization (or market cap) is the worth of a company based on the total value of all their shares; an important metric when determining the comparative value of companies for trading opportunities. Accordingly, many stock exchanges such as the New York or London Stock Exchange release market capitalization data on their listed companies. On the other hand, market value technically refers to what a company is worth in a much broader context. It is determined by multiple factors, including profitability, corporate debt, and the market environment as a whole. In this sense it aims to estimate the overall value of a company, with share price only being one element. Market value is therefore useful for determining whether a company’s shares are over- or undervalued, and in arriving at a price if the company is to be sold. Such valuations are generally made on a case-by-case basis though, and not regularly reported. For this reason, market capitalization is often reported as market value. What are the top companies in the world? The answer to this question depends on the metric used. Although the largest company by market capitalization, Microsoft's global revenue did not manage to crack the top 20 companies. Rather, American multinational retailer Walmart was ranked as the largest company in the world by revenue. Walmart also had the highest number of employees in the world.

  18. f

    Private investment in Latin America

    • scielo.figshare.com
    tiff
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ELIANA CARDOSO (2023). Private investment in Latin America [Dataset]. http://doi.org/10.6084/m9.figshare.23544416.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    SciELO journals
    Authors
    ELIANA CARDOSO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Latin America
    Description

    ABSTRACT This paper studies investment in Latin America and explores the relationship of investment with growth, exchange rates and the terms of trade. It addresses the theoretical issue of the relationship between the real exchange rate and the real price of capital with a model of a small open economy with four assets. It discusses the dynamics of both the real price of capital and the real exchange rate in response to different shock, including a change in monetary policy, an increase in external interest rates and a deterioration of the terms of trade. In the model (with a nominal exchange rate rule fixed by the central bank) a deterioration of the terms of trade leads to an immediate decline of the real price of capital, followed by a depreciating real exchange rate while the real price of capital slowly recovers. The paper explores the determinants of investment in Latin America. The regressions use quadrennial panel data for the period 1970-1985 in Argentina, Brazil, Chile, Colombia, Mexico and Venezuela. Together, these six countries account for 86 percent of the total GDP of the region. The decline in private investment shares in Latin America during the 1980s seems to result from the deterioration in the terms of trade, from the decline in growth (resulting from adjustment programs designed to reduce current account deficits), from a reduction in complementary public investment, from increased macroeconomic instability, and from a large stock of foreign debt. The real exchange rate and the real rate of depreciation have no significant role in the determination of private investment.

  19. LM Funding America (LMFA): Financial Freedom or Fool's Gambit? (Forecast)

    • kappasignal.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). LM Funding America (LMFA): Financial Freedom or Fool's Gambit? (Forecast) [Dataset]. https://www.kappasignal.com/2024/01/lm-funding-america-lmfa-financial.html
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LM Funding America (LMFA): Financial Freedom or Fool's Gambit?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. Great Recession: GDP growth rates for G7 countries from 2007 to 2011

    • flwrdeptvarieties.store
    • statista.com
    Updated Dec 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Catalina Espinosa (2022). Great Recession: GDP growth rates for G7 countries from 2007 to 2011 [Dataset]. https://flwrdeptvarieties.store/?_=%2Ftopics%2F10197%2Fthe-great-recession-worldwide%2F%23zUpilBfjadnZ6q5i9BcSHcxNYoVKuimb
    Explore at:
    Dataset updated
    Dec 5, 2022
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Catalina Espinosa
    Description

    From the onset of the Global Financial Crisis in the Summer of 2007, the world economy experienced an almost unprecedented period of turmoil in which millions of people were made unemployed, businesses declared bankruptcy en masse, and structurally critical financial institutions failed. The crisis was triggered by the collapse of the U.S. housing market and subsequent losses by investment banks such as Bear Stearns, Lehman Brothers, and Merrill Lynch. These institutions, which had become over-leveraged with complex financial securities known as derivatives, were tied to each other through a web of financial contracts, meaning that the collapse of one investment bank could trigger the collapse of several others. As Lehman Brothers failed on September 15. 2008, becoming the largest bankruptcy in U.S. history, shockwaves were felt throughout the global financial system. The sudden stop of flows of credit worldwide caused a financial panic and sent most of the world's largest economies into a deep recession, later known as the Great Recession. The World Economy in recession
    More than any other period in history, the world economy had become highly interconnected and interdependent over the period from the 1970s to 2007. As governments liberalized financial flows, banks and other financial institutions could take money in one country and invest it in another part of the globe. Financial institutions and other non-financial companies became multinational, meaning that they had subsidiaries and partners in many regions. All this meant that when Wall Street, the center of global finance in New York City, was shaken by bankruptcies and credit freezes in late 2007, other advanced economies did not need to wait long to feel the tremors. All of the G7 countries, the seven most economically advanced western-aligned countries, entered recession in 2008, before experiencing an even deeper trough in 2009. While all returned to growth by 2010, this was less stable in the countries of the Eurozone (Germany, France, Italy) over the following years due to the Eurozone crisis, as well as in Japan, which has had issues with low growth since the mid-1990s.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2020). United States Market Capitalization: % of GDP [Dataset]. https://www.ceicdata.com/en/indicator/united-states/market-capitalization--nominal-gdp
Organization logo

United States Market Capitalization: % of GDP

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 15, 2020
Dataset provided by
CEIC Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2011 - Dec 1, 2022
Area covered
United States
Description

Key information about United States Market Capitalization: % of GDP

  • United States Market Capitalization accounted for 155.0 % of its Nominal GDP in Dec 2022, compared with a percentage of 205.0 % in the previous year
  • US Market Capitalization: % Nominal GDP is updated yearly, available from Dec 1975 to Dec 2022
  • The data reached an all-time high of 205.0 % in Dec 2021 and a record low of 36.7 % in Dec 1978

The World Bank provides annual Market Capitalization as % of Nominal GDP. Market Capitalization includes domestic companies listed at the end of the year and excludes investment companies, mutual funds and other collective investment vehicles

Search
Clear search
Close search
Google apps
Main menu