Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset encapsulates a detailed examination of market dynamics over a five-year period, focusing on the fluctuation of prices and trading volumes across a diversified portfolio. It covers various sectors including energy commodities like natural gas and crude oil, metals such as copper, platinum, silver, and gold, cryptocurrencies including Bitcoin and Ethereum, and key stock indices and companies like the S&P 500, Nasdaq 100, Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta Platforms. This dataset serves as a valuable resource for analyzing trends and patterns in global markets.
Date: The date of the recorded data, formatted as DD-MM-YYYY. Natural_Gas_Price: Price of natural gas in USD per million British thermal units (MMBtu). Natural_Gas_Vol.: Trading volume of natural gas Crude_oil_Price: Price of crude oil in USD per barrel. Crude_oil_Vol.: Trading volume of crude oil Copper_Price: Price of copper in USD per pound. Copper_Vol.: Trading volume of copper Bitcoin_Price: Price of Bitcoin in USD. Bitcoin_Vol.: Trading volume of Bitcoin Platinum_Price: Price of platinum in USD per troy ounce. Platinum_Vol.: Trading volume of platinum Ethereum_Price: Price of Ethereum in USD. Ethereum_Vol.: Trading volume of Ethereum S&P_500_Price: Price index of the S&P 500. Nasdaq_100_Price: Price index of the Nasdaq 100. Nasdaq_100_Vol.: Trading volume for the Nasdaq 100 index Apple_Price: Stock price of Apple Inc. in USD. Apple_Vol.: Trading volume of Apple Inc. stock Tesla_Price: Stock price of Tesla Inc. in USD. Tesla_Vol.: Trading volume of Tesla Inc. stock Microsoft_Price: Stock price of Microsoft Corporation in USD. Microsoft_Vol.: Trading volume of Microsoft Corporation stock Silver_Price: Price of silver in USD per troy ounce. Silver_Vol.: Trading volume of silver Google_Price: Stock price of Alphabet Inc. (Google) in USD. Google_Vol.: Trading volume of Alphabet Inc. stock Nvidia_Price: Stock price of Nvidia Corporation in USD. Nvidia_Vol.: Trading volume of Nvidia Corporation stock Berkshire_Price: Stock price of Berkshire Hathaway Inc. in USD. Berkshire_Vol.: Trading volume of Berkshire Hathaway Inc. stock Netflix_Price: Stock price of Netflix Inc. in USD. Netflix_Vol.: Trading volume of Netflix Inc. stock Amazon_Price: Stock price of Amazon.com Inc. in USD. Amazon_Vol.: Trading volume of Amazon.com Inc. stock Meta_Price: Stock price of Meta Platforms, Inc. (formerly Facebook) in USD. Meta_Vol.: Trading volume of Meta Platforms, Inc. stock Gold_Price: Price of gold in USD per troy ounce. Gold_Vol.: Trading volume of gold
Image attribute : Image by Freepik
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Preferred Stock Prices, New York Stock Exchange for United States (M11008USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset was created by Joseph Armstrong
Released under Database: Open Database, Contents: © Original Authors
Facebook
TwitterEnd-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6849 points on November 28, 2025, gaining 0.54% from the previous session. Over the past month, the index has declined 0.60%, though it remains 13.54% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on November of 2025.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6825 points on December 2, 2025, gaining 0.18% from the previous session. Over the past month, the index has declined 0.39%, though it remains 12.82% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of All Common Stock Prices for United States (M1125BUSM347NNBR) from Jan 1945 to Dec 1968 about stock market, indexes, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Stock Prices: 12 Months Expectation: Increase data was reported at 36.100 % in Apr 2025. This records a decrease from the previous number of 39.900 % for Mar 2025. United States Stock Prices: 12 Months Expectation: Increase data is updated monthly, averaging 36.200 % from Jun 1987 (Median) to Apr 2025, with 455 observations. The data reached an all-time high of 57.200 % in Nov 2024 and a record low of 18.100 % in Mar 2008. United States Stock Prices: 12 Months Expectation: Increase data remains active status in CEIC and is reported by The Conference Board. The data is categorized under Global Database’s United States – Table US.H052: Consumer Confidence Index: Stock Price Expectation. [COVID-19-IMPACT]
Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides financial information for a selection of companies listed on the S&P 500 index in the United States. It includes key metrics such as last recorded stock prices, highest and lowest stock prices, absolute and percentage changes, and trading volumes. The data is collected at a specific point in time and offers insights into the stock market performance of S&P 500 companies.
Facebook
TwitterIt is very difficult to find institutional quality equity pricing data with sufficient cross-sectional coverage for free. This dataset is the rare exception. The data was made freely available in the public domain by Quandl, a data aggregator and provider acquired by Nasdaq and now operating under the brand "Nasdaq Data Link." Unfortunately this data stopped being maintained by Quandl on April 11, 2018. Nonetheless, it remains an important and useful dataset for research.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Average Prices of 40 Common Stocks for United States (M11006USM315NNBR) from Jan 1890 to Dec 1915 about stock market and USA.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
T-Mobile Us stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterIn 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Dow-Jones Industrial Stock Price Index for United States (M1109AUSM293NNBR) from Jan 1897 to Sep 1916 about stock market, industry, price index, indexes, price, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset encapsulates a detailed examination of market dynamics over a five-year period, focusing on the fluctuation of prices and trading volumes across a diversified portfolio. It covers various sectors including energy commodities like natural gas and crude oil, metals such as copper, platinum, silver, and gold, cryptocurrencies including Bitcoin and Ethereum, and key stock indices and companies like the S&P 500, Nasdaq 100, Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta Platforms. This dataset serves as a valuable resource for analyzing trends and patterns in global markets.
Date: The date of the recorded data, formatted as DD-MM-YYYY. Natural_Gas_Price: Price of natural gas in USD per million British thermal units (MMBtu). Natural_Gas_Vol.: Trading volume of natural gas Crude_oil_Price: Price of crude oil in USD per barrel. Crude_oil_Vol.: Trading volume of crude oil Copper_Price: Price of copper in USD per pound. Copper_Vol.: Trading volume of copper Bitcoin_Price: Price of Bitcoin in USD. Bitcoin_Vol.: Trading volume of Bitcoin Platinum_Price: Price of platinum in USD per troy ounce. Platinum_Vol.: Trading volume of platinum Ethereum_Price: Price of Ethereum in USD. Ethereum_Vol.: Trading volume of Ethereum S&P_500_Price: Price index of the S&P 500. Nasdaq_100_Price: Price index of the Nasdaq 100. Nasdaq_100_Vol.: Trading volume for the Nasdaq 100 index Apple_Price: Stock price of Apple Inc. in USD. Apple_Vol.: Trading volume of Apple Inc. stock Tesla_Price: Stock price of Tesla Inc. in USD. Tesla_Vol.: Trading volume of Tesla Inc. stock Microsoft_Price: Stock price of Microsoft Corporation in USD. Microsoft_Vol.: Trading volume of Microsoft Corporation stock Silver_Price: Price of silver in USD per troy ounce. Silver_Vol.: Trading volume of silver Google_Price: Stock price of Alphabet Inc. (Google) in USD. Google_Vol.: Trading volume of Alphabet Inc. stock Nvidia_Price: Stock price of Nvidia Corporation in USD. Nvidia_Vol.: Trading volume of Nvidia Corporation stock Berkshire_Price: Stock price of Berkshire Hathaway Inc. in USD. Berkshire_Vol.: Trading volume of Berkshire Hathaway Inc. stock Netflix_Price: Stock price of Netflix Inc. in USD. Netflix_Vol.: Trading volume of Netflix Inc. stock Amazon_Price: Stock price of Amazon.com Inc. in USD. Amazon_Vol.: Trading volume of Amazon.com Inc. stock Meta_Price: Stock price of Meta Platforms, Inc. (formerly Facebook) in USD. Meta_Vol.: Trading volume of Meta Platforms, Inc. stock Gold_Price: Price of gold in USD per troy ounce. Gold_Vol.: Trading volume of gold
Image attribute : Image by Freepik