This statistic shows the top 25 cities in the United States with the highest resident population as of July 1, 2022. There were about 8.34 million people living in New York City as of July 2022.
In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.
Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.
Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.
In 2021, the per capita income in San Francisco city was at 80,383 U.S. dollars. San Francisco was followed in this regard by Seattle and Washington, D.C. The most populated cities in the U.S. are ranked by per capita income in this statistic. While New York, New York had the highest population, San Francisco had the highest per capita income in 2021. The median household income in San Francisco in 2020 was 119,136 dollars, the highest among the most populated cities in the United States.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
In 2021, Philadelphia, Pennsylvania was the city with the highest poverty rate of the United States' most populated cities. In this statistic, the cities are sorted by poverty rate, not population. The most populated city in 2021 according to the source was New York city - which had a poverty rate of 18 percent.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Sustainable cities depend on urban forests. City trees -- a pillar of urban forests -- improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about urban forests as ecosystems, particularly their spatial composition, nativity statuses, biodiversity, and tree health. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities. The data comes from tree inventories conducted at the level of cities and/or neighborhoods. Each data sheet includes detailed information on tree location, species, nativity status (whether a tree species is naturally occurring or introduced), health, size, whether it is in a park or urban area, and more (comprising 28 standardized columns per datasheet). This dataset could be analyzed in combination with citizen-science datasets on bird, insect, or plant biodiversity; social and demographic data; or data on the physical environment. Urban forests offer a rare opportunity to intentionally design biodiverse, heterogenous, rich ecosystems. Methods See eLife manuscript for full details. Below, we provide a summary of how the dataset was collected and processed.
Data Acquisition We limited our search to the 150 largest cities in the USA (by census population). To acquire raw data on street tree communities, we used a search protocol on both Google and Google Datasets Search (https://datasetsearch.research.google.com/). We first searched the city name plus each of the following: street trees, city trees, tree inventory, urban forest, and urban canopy (all combinations totaled 20 searches per city, 10 each in Google and Google Datasets Search). We then read the first page of google results and the top 20 results from Google Datasets Search. If the same named city in the wrong state appeared in the results, we redid the 20 searches adding the state name. If no data were found, we contacted a relevant state official via email or phone with an inquiry about their street tree inventory. Datasheets were received and transformed to .csv format (if they were not already in that format). We received data on street trees from 64 cities. One city, El Paso, had data only in summary format and was therefore excluded from analyses.
Data Cleaning All code used is in the zipped folder Data S5 in the eLife publication. Before cleaning the data, we ensured that all reported trees for each city were located within the greater metropolitan area of the city (for certain inventories, many suburbs were reported - some within the greater metropolitan area, others not). First, we renamed all columns in the received .csv sheets, referring to the metadata and according to our standardized definitions (Table S4). To harmonize tree health and condition data across different cities, we inspected metadata from the tree inventories and converted all numeric scores to a descriptive scale including “excellent,” “good”, “fair”, “poor”, “dead”, and “dead/dying”. Some cities included only three points on this scale (e.g., “good”, “poor”, “dead/dying”) while others included five (e.g., “excellent,” “good”, “fair”, “poor”, “dead”). Second, we used pandas in Python (W. McKinney & Others, 2011) to correct typos, non-ASCII characters, variable spellings, date format, units used (we converted all units to metric), address issues, and common name format. In some cases, units were not specified for tree diameter at breast height (DBH) and tree height; we determined the units based on typical sizes for trees of a particular species. Wherever diameter was reported, we assumed it was DBH. We standardized health and condition data across cities, preserving the highest granularity available for each city. For our analysis, we converted this variable to a binary (see section Condition and Health). We created a column called “location_type” to label whether a given tree was growing in the built environment or in green space. All of the changes we made, and decision points, are preserved in Data S9. Third, we checked the scientific names reported using gnr_resolve in the R library taxize (Chamberlain & Szöcs, 2013), with the option Best_match_only set to TRUE (Data S9). Through an iterative process, we manually checked the results and corrected typos in the scientific names until all names were either a perfect match (n=1771 species) or partial match with threshold greater than 0.75 (n=453 species). BGS manually reviewed all partial matches to ensure that they were the correct species name, and then we programmatically corrected these partial matches (for example, Magnolia grandifolia-- which is not a species name of a known tree-- was corrected to Magnolia grandiflora, and Pheonix canariensus was corrected to its proper spelling of Phoenix canariensis). Because many of these tree inventories were crowd-sourced or generated in part through citizen science, such typos and misspellings are to be expected. Some tree inventories reported species by common names only. Therefore, our fourth step in data cleaning was to convert common names to scientific names. We generated a lookup table by summarizing all pairings of common and scientific names in the inventories for which both were reported. We manually reviewed the common to scientific name pairings, confirming that all were correct. Then we programmatically assigned scientific names to all common names (Data S9). Fifth, we assigned native status to each tree through reference to the Biota of North America Project (Kartesz, 2018), which has collected data on all native and non-native species occurrences throughout the US states. Specifically, we determined whether each tree species in a given city was native to that state, not native to that state, or that we did not have enough information to determine nativity (for cases where only the genus was known). Sixth, some cities reported only the street address but not latitude and longitude. For these cities, we used the OpenCageGeocoder (https://opencagedata.com/) to convert addresses to latitude and longitude coordinates (Data S9). OpenCageGeocoder leverages open data and is used by many academic institutions (see https://opencagedata.com/solutions/academia). Seventh, we trimmed each city dataset to include only the standardized columns we identified in Table S4. After each stage of data cleaning, we performed manual spot checking to identify any issues.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 20 cities in the Midland County, MI by Non-Hispanic American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions
A dataset listing Maine cities by population for 2024.
How many incorporated places are registered in the U.S.?
There were 19,502 incorporated places registered in the United States as of July 31, 2019. 16,410 had a population under 10,000 while, in contrast, only 10 cities had a population of one million or more.
Small-town America
Suffice it to say, almost nothing is more idealized in the American imagination than small-town America. When asked where they would prefer to live, 30 percent of Americans reported that they would prefer to live in a small town. Americans tend to prefer small-town living due to a perceived slower pace of life, close-knit communities, and a more affordable cost of living when compared to large cities.
An increasing population
Despite a preference for small-town life, metropolitan areas in the U.S. still see high population figures, with the New York, Los Angeles, and Chicago metro areas being the most populous in the country. Metro and state populations are projected to increase by 2040, so while some may move to small towns to escape city living, those small towns may become more crowded in the upcoming decades.
https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions
A dataset listing Colorado cities by population for 2024.
https://www.newyork-demographics.com/terms_and_conditionshttps://www.newyork-demographics.com/terms_and_conditions
A dataset listing New York cities by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 20 cities in the Sherburne County, MN by Non-Hispanic American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
https://www.louisiana-demographics.com/terms_and_conditionshttps://www.louisiana-demographics.com/terms_and_conditions
A dataset listing Louisiana cities by population for 2024.
https://www.newmexico-demographics.com/terms_and_conditionshttps://www.newmexico-demographics.com/terms_and_conditions
A dataset listing New Mexico cities by population for 2024.
This map symbolizes the relative population counts for the City's 12 Data Divisions, aggregating the tract-level estimates from the the Census Bureau's American Community Survey 2021 five-year samples. Please refer to the map's legend for context to the color shading -- darker hues indicate more population.If you click on each Data Division, you can view other Census demographic information about that Data Division in addition to the population count.About the Census Data:The data comes from the U.S. Census Bureau's American Community Survey's 2017-2021 five-year samples. The American Community Survey (ACS) is an ongoing survey conducted by the federal government that provides vital information annually about America and its population. Information from the survey generates data that help determine how more than $675 billion in federal and state funds are distributed each year.For more information about the Census Bureau's ACS data and process of constructing the survey, visit the ACS's About page.About the City's Data Divisions:As a planning analytic tool, an interdepartmental working group divided Rochester into 12 “data divisions.” These divisions are well-defined and static so they are positioned to be used by the City of Rochester for statistical and planning purposes. Census data is tied to these divisions and serves as the basis for analyses over time. As such, the data divisions are designed to follow census boundaries, while also recognizing natural and human-made boundaries, such as the River, rail lines, and highways. Historical neighborhood boundaries, while informative in the division process, did not drive the boundaries. Data divisions are distinct from the numerous neighborhoods in Rochester. Neighborhood boundaries, like quadrant boundaries, police precincts, and legislative districts often change, which makes statistical analysis challenging when looking at data over time. The data division boundaries, however, are intended to remain unchanged. It is hoped that over time, all City data analysts will adopt the data divisions for the purpose of measuring change over time throughout the city.
https://www.virginia-demographics.com/terms_and_conditionshttps://www.virginia-demographics.com/terms_and_conditions
A dataset listing Virginia cities by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 20 cities in the Coos County, NH by Hispanic American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This statistic shows the top 25 cities in the United States with the highest resident population as of July 1, 2022. There were about 8.34 million people living in New York City as of July 2022.