The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Office of the Assistant Secretary for Research and Technology/Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S. Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
The National Waterway Network (NTAD 2015) is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration.
The Navigable Waterway Network Nodes dataset is periodically updated by the United States Army Corp of Engineers (USACE) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The National Waterway Network (Nodes) is a comprehensive network database of the nation's navigable waterways. The dataset covers the lower 48 states as well as the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. Most of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters. These data could be used for analytical studies of waterway performance, for compiling commodity flow statistics, and for mapping purposes. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529054
The National Waterway Network (NWN) is a geographic database of navigable waterways and channels in and around the United States, for analytical studies of navigation performance, for compiling commodity flow statistics, and for mapping purposes. The NWN is comprised of a link database and a node database. Links are line strings, which consist of beginning and end points (nodes) with intermediate vertices (shape points). Links represent either actual shipping lanes (i.e., channels, Intracoastal Waterways, sea lanes, rivers) or serve as representative paths in open water (where no defined shipping paths exist). Nodes may represent physical entities such as river confluence's, ports/facilities, and intermodal terminals, USACE nodes, or may be inserted for analytical purposes (i.e., to facilitate routing).
The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).
© The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center This layer is sourced from maps.bts.dot.gov.
Monthly summary statistics are based on data from the Lock Performance Monitoring System (LPMS). The LPMS was developed to collect a 100% sample of data on the locks that are owned and/or operated by the US Army Corps of Engineers. Each record contains data summarized monthly by lock chamber, and direction (upbound and number and types of vessels and lockages (recreation, commercial, tows, other), cuts, hardware operations, delay and processing times, number of tows and all vessels delayed, total tons, commodity tonnages, and number of barges. The data are by waterway and by calendar year. The waterway files contain 5 years of data for one waterway. The calendar year files contain 1 year of data for all waterways.
The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).
© The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Note: This content was created by OpenStreetMap, not the City of Rochester. You can find more about them here.This feature layer provides access to OpenStreetMap (OSM) waterways data for North America, which is updated every 1-2 minutes with the latest edits. In the context of this map, the term "waterway" describes rivers, streams, and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this map, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.The map is zoomed in to the Rochester area, but users can use the minus (-) sign to zoom out. If you would like to see a specific location, you can enter it into the search bar at the top right section of the map interface.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Four digital water-surface profile maps for a 14-mile reach of the Mississippi River near Prairie Island in Welch, Minnesota from the confluence of the St. Croix River at Prescott, Wisconsin to upstream of the United States Army Corps of Engineers (USACE) Lock and Dam No. 3 in Welch, Minnesota, were created by the U.S. Geological Survey (USGS) in cooperation with the Prairie Island Indian Community. The water-surface profile maps depict estimates of the areal extent and depth of inundation corresponding to selected water levels (stages) at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). Current conditions for estimating near-real-time areas of water inundation by use of USGS streamgage information may be obtained on the internet at http://waterdata.usgs.gov/. Water-surface profiles were computed for the stream reach using HEC-GeoRAS software by means of a one-dimensional step-backwater HEC-RAS hydraulic model using the steady-state flow ...
This dataset represents the Navigable Waterways data as of October 24, 2018, and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters. These data could be used for analytical studies of waterway performance, for compiling commodity flow statistics, and for mapping purposes.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The rivers of South America are derived from the World Wildlife Fund's (WWF) HydroSHEDS drainage direction layer and a stream network layer.The drainage direction layer was created from NASA's Shuttle Radar Topographic Mission (SRTM) 15-second Digital Elevation Model (DEM).The raster stream network was determined by using the HydroSHEDS flow accumulation grid, with a threshold of about 100 km² upstream area.
The stream network dataset consists of the following information: the origin node of each arc in the network (FROM_NODE), the destination of each arc in the network (TO_NODE), the Strahler stream order of each arc in the network (STRAHLER), numerical code and name of the major basin that the arc falls within (MAJ_BAS and MAJ_NAME); - area of the major basin in square km that the arc falls within (MAJ_AREA); - numerical code and name of the sub-basin that the arc falls within (SUB_BAS and SUB_NAME); - area of the sub-basin in square km that the arc falls within (SUB_AREA); - numerical code of the sub-basin towards which the sub-basin flows that the arc falls within (TO_SUBBAS) (the codes -888 and -999 have been assigned respectively to internal sub-basins and to sub-basins draining into the sea). The attributes table now includes a field named "Regime" with tentative classification of perennial ("P") and intermittent ("I") streams.
Supplemental Information:
This dataset is developed as part of a GIS-based information system on water resources for South America. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations.
Contact points:
Metadata contact: AQUASTAT FAO-UN Land and Water Division
Contact: Jippe Hoogeveen FAO-UN Land and Water Division
Contact: Livia Peiser FAO-UN Land and Water Division
Data lineage:
The linework of the map was obtained by converting the stream network to a feature dataset with the Hydrology toolset in ESRI ArcGIS.The Flow Direction and Stream Order grids were derived from hydrologically corrected elevation data with a resolution of 15 arc-seconds.The elevation dataset was part of a mapping product, HydroSHEDS, developed by the Conservation Science Program of World Wildlife Fund.Original input data had been obtained during NASA's Shuttle Radar Topography Mission (SRTM).
Online resources:
Download - Rivers of South America (ESRI shapefile)
For general information regarding the HydroSHEDS data product
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These two data-sets contain potentially navigable rivers for small and medium-sized boats in South-America depending on the topography, rainfall and potential evapotranspiration. Hence, it is an approximation of the location of navigable rivers, not an actual map of hidroways. Navigability is defined by the extent of a river which in this case (1) for small boats accounts to ~5-15 meters minimum extent and (2) for medium-sized boats ~30-40m meters minimum extent. The model data was parametrized and validated with land-cover data from high-resolution satellite images. Please see the full description of how the data-sets was created in the attached PDF File.
Use this map to explore spatial data in the American River watershed. To add additional data: (1) click Modify Map; (2) then click Add; (3) then click Search for Layers; and (4) in the Sierra Nevada Conservancy search box, type American River Watershed to find extra data.
The physical location of Locks and Dams maintained by the US Army Corp of Engineers along Navigable Waterways (Mississippi River) in the State of Minnesota.
Navigable water, Minnesota represents Navigable waterway centerlines for all navigable waterways within the state of Minnesota. It originated as an arc coverage with the U. S. Army Corps of Engineers. Then MnDOT extracted the arcs that lay within the state boundary. A description of the Navigable water layer is included in Section 5 of this document - Entity and Attribute Overview.
Check other metadata records in this package for more information on Locks, Dams, and navigable water.
Links to ESRI Feature Services:
Locks And Dams in Minnesota: Locks And Dams
Navigable Waterways in Minnesota: Navigable Waterways
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This feature layer provides access to OpenStreetMap (OSM) waterways data for North America, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM line (way) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes waterway features defined as a query against the hosted feature layer (i.e. waterway is not blank).In OSM, a waterway describes rivers, streams and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this feature layer, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.Zoom in to large scales (e.g. City level or 1:80k scale) to see the waterway features display. You can click on a feature to get the name of the waterway (if available). The name of the waterway will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this waterway layer displaying just one or two waterway types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. waterway is dam), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri may publish a few such layers (e.g. streams and rivers) that are ready to use, but not for every type of waterway.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This feature layer provides access to OpenStreetMap (OSM) waterways data for South America, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM line (way) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes waterway features defined as a query against the hosted feature layer (i.e. waterway is not blank).In OSM, a waterway describes rivers, streams and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this feature layer, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.Zoom in to large scales (e.g. City level or 1:80k scale) to see the waterway features display. You can click on a feature to get the name of the waterway (if available). The name of the waterway will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this waterway layer displaying just one or two waterway types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. waterway is dam), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri may publish a few such layers (e.g. streams and rivers) that are ready to use, but not for every type of waterway.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.
A digital dataset of the geomorphology of the Lower Mississippi River Valley in Missouri, Kentucky, Arkansas, Tennessee, Louisiana, and Mississippi was developed from Roger T. Saucier’s “Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley, Volumes I and II” (1994) as part of the Mississippi Alluvial Plain (MAP) Regional Water Availability Study. The maps included in the 1994 reports provide a comprehensive overview of the previously misunderstood alluvial valley geology and characterize twenty-nine Pleistocene and Holocene alluvial deposits, such as point bars, abandoned channels, backswamps, and natural levees. Each map was georeferenced to North American Datum 1983 and projected to USA Contiguous Albers Equal Conic (U.S. Geological Survey version) projection (standard parallels 29.5 and 45.5 degrees, central meridian -96 degrees, and latitude of origin 23 degrees). Once georeferenced (using ArcMap v 10.4.1), individual geomorphological features were digitized manually. Each polygon was validated using a geodatabase topology and the Topology Editor tools in ArcMap; this step was completed to create individual polygons without gaps or overlap. Efforts were made to match colors in the original map legend to the digital product, with the exception of a few features listed in the original key (for example, feature “Pve” does not match the exact color in the plates). Updated colors were selected to ease the distinction between similarly colored features. Saucier envisioned his work to be utilized by engineering geologists conducting studies that were focused at both the local and regional scale in the Lower Mississippi River Valley (Saucier, 1994). Creating a digital dataset of Saucier’s seminal geomorphological work increases the usability of the map layers for current and future scientific investigations focused on regional groundwater availability in the Mississippi Alluvial Plain. References Saucier, R.T., 1994, Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley: U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, Vols. I and II, 398 p. and 28 plates
Electrical resistivity results from four regional airborne electromagnetic (AEM) surveys (Burton et al. 2024, Hoogenboom et al. 2023, Minsley et al. 2021, Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey (USGS) to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. To calculate estimates of streambed properties across the MAP region, e.g. the relative connection potential between streams and the adjacent Mississippi River Valley Alluvial aquifer (MRVA), new 3D grids of electrical resistivity were generated for 2 meter (m) depth layers and only shallow depths (0-30 m). One grid was made with the horizontal dimension aligning with the 1 kilometer (km) x 1 km National Hydrogeologic Grid (NHG; Clark et al. 2018), and a second version was generated at a finer resolution of 100 m x 100 m, subdividing the NHG grid. Stream locations taken from the National Hydrograph Dataset Plus (NHDPlus) high resolution dataset were buffered with a 1.0 km radius and then intersected with both shallow 3D depth grids to isolate resistivity values immediately beneath or adjacent to streams. Twelve “facies classes” were defined to categorize materials expected to have similar hydrologic and geologic properties based on their electrical resistivity (i.e. low classes correspond to clays and silts with low permeability, and higher classes reflect larger grain sizes (sands, gravels) with expected higher permeability). The potential hydraulic connection through streambed sediments was estimated by calculating the vertically integrated electrical conductance (VIC) across each 2 m layer between 0 and 10 m depth. The shallow 3D resistivity and facies grids were exported in NetCDF format with an accompanying XML NetCDF Markdown Language metadata file. The streambed connectivity estimates were exported as raster images in Georeferenced Tagged Image File Format (GeoTIFF). Burton, B.L., Adams, R.F. Adams, Minsley, B.J., Pace, M.D.M., Kress, W.H., Rigby, J.R., and Bussell, A.M., 2024, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, March 2018 and May - August 2021: U.S. Geological Survey data release, https://doi.org/10.5066/P9KPK3UJ. Hoogenboom, B.E., Minsley, B.J., James, S.R., and Pace, M.D., 2023, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022: U.S. Geological Survey data release, https://doi.org/10.5066/P93DO0EO. Burton, B.L., Minsley, B.J., Bloss, B.R., and Kress, W.H., 2021, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9XBBBUU. Clark, B.R., Barlow, P.M., Peterson, S.M., Hughes, J.D., Reeves, H.W., and Viger, R.J., 2018, National-scale grid to support regional groundwater availability studies and a national hydrogeologic database: U.S. Geological Survey data release, https://doi.org/10.5066/F7P84B24. Minsley, B.J., James, S.R., Bedrosian, P.A., Pace, M.D., Hoogenboom, B.E., and Burton, B.L., 2021, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020: U.S. Geological Survey data release, https://doi.org/10.5066/P9E44CTQ.
Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as input were acquired by the SuperDove cubesats comprising the PlanetScope constellation, but the original images cannot be redistributed due to licensing restrictions; the end products derived from these images are provided instead. The large number of cubesats in the PlanetScope constellation allows for frequent temporal coverage and the neural network-based approach takes advantage of this high density time series of information by estimating depth via one of four NNDR methods described in the manuscript: 1. Mean-spec: the images are averaged over time and the resulting mean image is used as input to the NNDR. 2. Mean-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is averaged to obtain the final depth map. 3. NN-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is then used as input to a second, ensembling neural network that essentially weights the depth estimates from the individual images so as to optimize the agreement between the image-derived depth estimates and field measurements of water depth used for training; the output from the ensembling neural network serves as the final depth map. 4. Optimal single image: a separate NNDR is applied independently to each image in the time series and only the image that yields the strongest agreement between the image-derived depth estimates and the field measurements of water depth used for training is used as the final depth map. MATLAB (Version 24.1, including the Deep Learning Toolbox) for performing this analysis is provided in the function NN_depth_ensembling.m available on the main landing page for the data release of which this is a child item, along with a flow chart illustrating the four different neural network-based depth retrieval methods. To develop and test this new NNDR approach, the method was applied to satellite images from the American River near Fair Oaks, CA, acquired in October 2020. Field measurements of water depth available through another data release (Legleiter, C.J., and Harrison, L.R., 2022, Field measurements of water depth from the American River near Fair Oaks, CA, October 19-21, 2020: U.S. Geological Survey data release, https://doi.org/10.5066/P92PNWE5) were used for training and validation. The depth maps produced via each of the four methods described above are provided as GeoTIFF files, with file name suffixes that indicate the method employed: American_mean-spec.tif, American_mean-depth.tif, American_NN-depth.tif, and American-single-image.tif. The spatial resolution of the depth maps is 3 meters and the pixel values within each map are water depth estimates in units of meters.
Rivers and streams of the U.S. This data was derived from data provided by the National Weather Service and the National Operational Hydrologic Remote Sensing Center (NOHRSC). The primary purpose of this dataset is to provide a common, conformant streams coverage for NWS products and processes, including IHABBS and usages as map backgrounds for river forecasts for a variety of National Weather Service applications. This data is a subset containing only major rivers.The data and related materials are made available through Esri (http://www.esri.com) and are intended for educational purposes only (see Access and Use Constraints section).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Heavy rainfall occurred across Louisiana during March 8-19, 2016, as a result of a massive, slow-moving southward dip in the jet stream, which moved eastward across Mexico, then neared the Gulf Coast, funneling deep tropical moisture into parts of the Gulf States and the Mississippi River Valley. The storm caused major flooding in north-central and southeastern Louisiana. Digital flood-inundation maps for a 4.3-mile reach within the community of Monroe near Black Bayou in Ouachita Parish, LA was created by the U.S. Geological Survey (USGS) in cooperation with Federal Emergency Management Agency (FEMA) to support response and recovery operations following a March 8-19, 2016 flood event. The inundation maps depict estimates of the areal extent and depth of flooding corresponding to 4 high-water marks (HWM) identified and surveyed by the USGS following the flood event.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, is composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats. The Watershed Boundary Dataset is being developed under the leadership of the Subcommittee on Spatial Water Data, which is part of the Advisory Committee on Water Information (ACWI) and the Federal Geographic Data Committee (FGDC). The USDA Natural Resources Conservation Service (NRCS), along with many other federal agencies and national associations, have representatives on the Subcommittee on Spatial Water Data. As watershed boundary geographic information systems (GIS) coverages are completed, statewide and national data layers will be made available via the Geospatial Data Gateway to everyone, including federal, state, local government agencies, researchers, private companies, utilities, environmental groups, and concerned citizens. The database will assist in planning and describing water use and related land use activities. Resources in this dataset:Resource Title: Watershed Boundary Dataset (WBD). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/dataset/?cid=nrcs143_021630 Web site for the Watershed Boundary Dataset (WBD), including links to:
Review Data Availability (Status Maps)
Obtain Data by State, County, or Other Area
Obtain Seamless National Data offsite link image
Geospatial Data Tools
National Technical and State Coordinators
Information about WBD dataset
The National Waterway Network (NWN) is a geographic database of navigable waterways and channels in and around the United States, for analytical studies of navigation performance, for compiling commodity flow statistics, and for mapping purposes. The NWN is comprised of a link database and a node database. Links are line strings, which consist of beginning and end points (nodes) with intermediate vertices (shape points). Links represent either actual shipping lanes (i.e., channels, Intracoastal Waterways, sea lanes, rivers) or serve as representative paths in open water (where no defined shipping paths exist). Nodes may represent physical entities such as river confluence's, ports/facilities, and intermodal terminals, USACE nodes, or may be inserted for analytical purposes (i.e., to facilitate routing).
The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Office of the Assistant Secretary for Research and Technology/Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S. Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
The National Waterway Network (NTAD 2015) is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration.