23 datasets found
  1. a

    North America Annual Precipitation

    • hub.arcgis.com
    • climat.esri.ca
    • +1more
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d4b81cb2dc4f4b938964aa1eb9b4b9a9
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License
    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  2. Annual precipitation in the United States 2024, by state

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual precipitation in the United States 2024, by state [Dataset]. https://www.statista.com/statistics/1101518/annual-precipitation-by-us-state/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, Louisiana recorded ***** inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only **** inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of **** inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.

  3. T

    United States Average Precipitation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). United States Average Precipitation [Dataset]. https://tradingeconomics.com/united-states/precipitation
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    United States
    Description

    Precipitation in the United States increased to 735.83 mm in 2023 from 707.98 mm in 2022. This dataset includes a chart with historical data for the United States Average Precipitation.

  4. USA Soils Map Units

    • historic-cemeteries.lthp.org
    • mapdirect-fdep.opendata.arcgis.com
    • +9more
    Updated Apr 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Soils Map Units [Dataset]. https://historic-cemeteries.lthp.org/maps/06e5fd61bdb6453fb16534c676e1c9b9
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -

  5. U.S. Hourly Precipitation Data

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +7more
    csv, dat, kmz
    Updated Oct 1951
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (NCEI) (1951). U.S. Hourly Precipitation Data [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00313
    Explore at:
    csv, dat, kmzAvailable download formats
    Dataset updated
    Oct 1951
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Time period covered
    Jan 1, 1940 - Dec 31, 2013
    Area covered
    Geographic Region > Polar, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Palau, Geographic Region > Equatorial, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Guam, Geographic Region > Mid-Latitude, Ocean > Pacific Ocean > Central Pacific Ocean > American Samoa, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Puerto Rico, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Virgin Islands, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Marshall Islands, United States
    Description

    Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.

  6. Climate Zones - DOE Building America Program

    • atlas.eia.gov
    • anrgeodata.vermont.gov
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Energy Information Administration (2020). Climate Zones - DOE Building America Program [Dataset]. https://atlas.eia.gov/datasets/eia::climate-zones-doe-building-america-program/
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Energy Information Administrationhttp://www.eia.gov/
    Authors
    U.S. Energy Information Administration
    Area covered
    Description

    This map layer depicts the climate zone designations used by the U.S. Department of Energy Building America Program by county boundaries (generalized version). It is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building. The guide can be used in conjunction with guidance in the Building America Solution Center and the Best Practices builders’ guides produced by the DOE Building America Program to help builders determine which climate-specific guidance they should use. This data for this layer is taken from Building America Best Practices Series, Volume 7.3 - Guide to Determining Climate Regions by County. The eight U.S. Building America climate regions described here are based on the climate designations used by the International Energy Conservation Code (IECC) and the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). The IECC climate zone map was developed by DOE researchers at Pacific Northwest National Laboratory with input from Building America team members, in particular Joseph Lstiburek of Building Science Corporation.a,b The IECC map was developed to provide a simplified, consistent approach to defining climate for implementation of various codes; it was based on widely accepted classifications of world climates that have been applied in a variety of different disciplines. The PNNL-developed map was adopted by the IECC and was first included in the IECC in the 2004 Supplement to the IECC. It first appeared in ASHRAE 90.1 in the 2004 edition. The IECC map divided the United States into eight temperatureoriented climate zones. These zones are further divided into three moisture regimes designated A, B, and C. Thus the IECC map allows for up to 24 potential climate designations. In 2003, with direction from the Building America teams, researchers at DOE’s National Renewable Energy Laboratory simplified the IECC map for purposes of the Building America Program, into eight climate zones. For reporting purposes, these are further combined into five climate categories: Hot-humid,hot-dry/mixed drymixed-humidmarinecold/very coldsubarctic.The Building America and IECC climate maps are shown in Figures 1 and 2. The climate regions are described below. Climate zone boundaries follow county boundary lines. A listing of counties comprising each climate zone is provided below, beginning on page 5. The climate region definitions are based on heating degree days, average temperatures, and precipitation as follows:Hot-HumidA hot-humid climate is defined as a region that receives more than 20 inches (50 cm) of annual precipitation and where one or both of the following occur:• A 67°F (19.5°C) or higher wet bulb temperature for 3,000 or more hours during the warmest six consecutive months of the year; or• A 73°F (23°C) or higher wet bulb temperature for 1,500 or more hours during the warmest six consecutive months of the year.The Building America hot-humid climate zone includes the portions of IECC zones 1, 2, and 3 that are in the moist category (A) below the “warm-humid” line shown on the IECC map. Mixed-HumidA mixed-humid climate is defined as a region that receives more than 20 inches (50 cm) of annual precipitation, has approximately 5,400 heating degree days (65°F basis) or fewer, and where the average monthly outdoor temperature drops below 45°F (7°C) during the winter months.The Building America mixed-humid climate zone includes the portions of IECC zones 4 and 3 in category A above the “warmhumid” line. Hot-DryA hot-dry climate is defined as a region that receives less than 20 inches (50 cm) of annual precipitation and where the monthly average outdoor temperature remains above 45°F (7°C) throughout the year.The Building America hot-dry climate zone corresponds to the portions of IECC zones 2 and 3 in the dry category.Mixed-Dry A mixed-dry climate is defined as a region that receives less than 20 inches (50 cm) of annual precipitation, has approximately 5,400 heating degree days (65°F basis) or less, and where the average monthly outdoor temperature drops below 45°F (7°C) during the winter months.The Building America mixed-dry climate zone corresponds to IECC climate zone 4 B (dry).Cold A cold climate is defined as a region with between 5,400 and 9,000 heating degree days (65°F basis).The Building America cold climate corresponds to the IECC climate zones 5 and 6.Very-Cold A very cold climate is defined as a region with between 9,000 and 12,600 heating degree days (65°F basis).The Building America very cold climate corresponds to IECC climate zone 7.SubarcticA subarctic climate is defined as a region with 12,600 heating degree days (65° basis) or more. The only subarctic regions in the United States are in found Alaska, which is not shown in Figure 1.The Building America subarctic climate zone corresponds to IECC climate zone 8.Marine A marine climate is defined as a region that meets all of the following criteria: • A coldest month mean temperature between 27°F (-3°C) and 65°F (18°C)• A warmest month mean of less than 72°F (22°C)• At least 4 months with mean temperatures higher than 50°F (10°C)• A dry season in summer. The month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation in the rest of the year. The cold season is October through March in the Northern Hemisphere and April through September in the Southern Hemisphere.The Building America marine climate corresponds to those portions of IECC climate zones 3 and 4 located in the “C” moisture category. Building America and IECC Climate ZonesThe table below shows the relationship between the Building America and IECC climate zones.

    Building America
    IECC
    
    
    Subarctic
    Zone 8
    
    
    Very Cold
    Zone 7
    
    
    Cold
    Zone 5 and 6
    
    
    Mixed-Humid
    4A and 3A counties above warm-humid line
    
    
    Mixed-Dry
    Zone 4B
    
    
    Hot-Humid
    2A and 3A counties below warm-humid line
    
    
    Hot-Dry
    Zone 3B
    
    
    Marine
    All counties with a “C” moisture regime
    
  7. Monthly average temperature in the United States 2020-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  8. d

    Grid of mean annual precipitation for Oklahoma, 1961-1990 base period.

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Oct 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Grid of mean annual precipitation for Oklahoma, 1961-1990 base period. [Dataset]. https://catalog.data.gov/dataset/grid-of-mean-annual-precipitation-for-oklahoma-1961-1990-base-period
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Oklahoma
    Description

    This digital-map data set consists of a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, "A statistical-topographic model for mapping climatological precipitation over mountainous terrain:" Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The precipitation grid was used to develop peak-flow regression equations by Tortorelli, (1997, "Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma," U.S. Geological Survey Water-Resources Investigations Report 97-4202.)

  9. Data from: Massachusetts Growing Degree Day and Precipitation Maps

    • search.dataone.org
    • portal.edirepository.org
    Updated Sep 2, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Hall (2013). Massachusetts Growing Degree Day and Precipitation Maps [Dataset]. https://search.dataone.org/view/knb-lter-hfr.88.14
    Explore at:
    Dataset updated
    Sep 2, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Brian Hall
    Area covered
    Description

    A regression model that estimates monthly temperature and precipitation as a function of latitude, longitude, and elevation for the New England area was used to estimate annual growing degree days and precipitation for the state of Massachusetts. For details of the regression model please see the published paper (Ollinger, S.V., Aber, J.D., Federer, C.A., Lovett, G.M., Ellis, J.M., 1995. Modeling Physical and Chemical Climate of the Northeastern United States for a Geographic Information System. US Dept of Agriculture, Forest Service, Radnor, PA, USA).

  10. d

    Mean annual precipitation, (1971-2000) for the Apache-Sitgreaves study area,...

    • datadiscoverystudio.org
    Updated Jul 20, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). Mean annual precipitation, (1971-2000) for the Apache-Sitgreaves study area, Arizona, USA [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/1f96e2186c024d6e94defc71d763af4a/html
    Explore at:
    Dataset updated
    Jul 20, 2010
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  11. d

    Data from: Mean annual runoff, precipitation, and evapotranspiration in the...

    • datadiscoverystudio.org
    gz
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Mean annual runoff, precipitation, and evapotranspiration in the glaciated northeastern United States, 1951-80. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/9451b8c88cb44ad7b79d4d6f8737090f/html
    Explore at:
    gzAvailable download formats
    Dataset updated
    Jun 8, 2018
    Area covered
    United States
    Description

    description: Two maps, compiled at 1:1,000,000 scale, depict mean annual runoff, precipitation, and evapotranspiration in the part of the United States east of Cleveland, Ohio and north of the southern limit of glaciation. The maps are mutually consistent in that runoff equals precipitation minus evapotranspiration everywhere. The runoff map is based on records of streamflow from 503 watersheds in the United States and southernmost Canada, adjusted to represent 1951-80 and supplemented by records of precipitation at 459 stations. Precipitation at each station was partitioned into point estimates of runoff and evapotranspiration, which were constrained such that the evapotranspiration estimates varied smoothly across the region and decreased with increasing latitude and altitude, and the runoff estimates were consistent with measured runoff from nearby watersheds. A point estimate of runoff was allowed to equal mean runoff in a nearby watershed, or to be somewhat higher (or lower) if a compensating departure from mean watershed runoff could be inferred in distant parts of the watershed on the basis of altitude or regional trends. Then, precipitation contours were drawn to parallel runoff contours but differ from them by the magnitude of nearby estimates of evapotranspiration. These maps may slightly underrepresent mean precipitation and evapotranspiration in areas of high relief because most precipitation stations in such areas are in valleys. These 3 coverages were used to produce Open-File Report 96-395. Additional information about methodology can be found in this report; abstract: Two maps, compiled at 1:1,000,000 scale, depict mean annual runoff, precipitation, and evapotranspiration in the part of the United States east of Cleveland, Ohio and north of the southern limit of glaciation. The maps are mutually consistent in that runoff equals precipitation minus evapotranspiration everywhere. The runoff map is based on records of streamflow from 503 watersheds in the United States and southernmost Canada, adjusted to represent 1951-80 and supplemented by records of precipitation at 459 stations. Precipitation at each station was partitioned into point estimates of runoff and evapotranspiration, which were constrained such that the evapotranspiration estimates varied smoothly across the region and decreased with increasing latitude and altitude, and the runoff estimates were consistent with measured runoff from nearby watersheds. A point estimate of runoff was allowed to equal mean runoff in a nearby watershed, or to be somewhat higher (or lower) if a compensating departure from mean watershed runoff could be inferred in distant parts of the watershed on the basis of altitude or regional trends. Then, precipitation contours were drawn to parallel runoff contours but differ from them by the magnitude of nearby estimates of evapotranspiration. These maps may slightly underrepresent mean precipitation and evapotranspiration in areas of high relief because most precipitation stations in such areas are in valleys. These 3 coverages were used to produce Open-File Report 96-395. Additional information about methodology can be found in this report

  12. Massachusetts Growing Degree Day and Precipitation Maps 2003

    • search.dataone.org
    • portal.edirepository.org
    • +1more
    Updated Dec 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Hall (2023). Massachusetts Growing Degree Day and Precipitation Maps 2003 [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-hfr%2F88%2F17
    Explore at:
    Dataset updated
    Dec 5, 2023
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Brian Hall
    Time period covered
    Jan 1, 2003
    Area covered
    Description

    A regression model that estimates monthly temperature and precipitation as a function of latitude, longitude, and elevation for the New England area was used to estimate annual growing degree days and precipitation for the state of Massachusetts. For details of the regression model please see the published paper (Ollinger, S.V., Aber, J.D., Federer, C.A., Lovett, G.M., Ellis, J.M., 1995. Modeling Physical and Chemical Climate of the Northeastern United States for a Geographic Information System. US Dept of Agriculture, Forest Service, Radnor, PA, USA).

  13. c

    U.S. Climate Thresholds - LOCA RCP 4.5 Early Century

    • resilience.climate.gov
    • heat.gov
    • +3more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). U.S. Climate Thresholds - LOCA RCP 4.5 Early Century [Dataset]. https://resilience.climate.gov/maps/nationalclimate::u-s-climate-thresholds-loca-rcp-4-5-early-century/about
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The US Global Change Research Program sponsors the semi-annual National Climate Assessment, which is the authoritative analysis of climate change and its potential impacts in the United States. The 4th National Climate Assessment (NCA4), issued in 2018, used high resolution, downscaled LOCA climate data for many of its national and regional analyses. The LOCA downscaling was applied to multi-model mean weighted averages, using the following 32 CMIP5 model ensemble:ACCESS1-0, ACCESS1-3, bcc-csm1-1, bcc-csm1-1-m, CanESM2, CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC EARTH, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-p1, GISS-E2-R-p1, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M.All of the LOCA variables used in NCA4 are presented here. Many are thresholded to provide 47 actionable statistics, like days with precipitation greater than 3", length of the growing season, or days above 90 degrees F. Time RangesStatistics for each variables were calculated over a 30-year period. Four different time ranges are provided:Historical: 1976-2005Early-Century: 2016-2045Mid-Century: 2036-2065Late-Century: 2070-2099Climate ScenariosClimate models use estimates of greenhouse gas concentrations to predict overall change. These difference scenarios are called the Relative Concentration Pathways. Two different RCPs are presented here: RCP 4.5 and RCP 8.5. The number indicates the amount of radiative forcing(watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but RCP 4.5 aligns with the international targets of the COP-26 agreement, while RCP 8.5 is aligns with a more "business as usual" approach. Detailed documentation and the original data from USGCRP, processed by NOAA's National Climate Assessment Technical Support Unit at the North Carolina Institute for Climate Studies, can be accessed from the NCA Atlas. Variable DefinitionsCooling Degree Days: Cooling degree days (annual cumulative number of degrees by which the daily average temperature is greater than 65°F) [degree days (degF)]Consecutive Dry Days: Annual maximum number of consecutive dry days (days with total precipitation less than 0.01 inches)Consecutive Dry Days Jan Jul Aug: Summer maximum number of consecutive dry days (days with total precipitation less than 0.01 inches in June, July, and August)Consecutive Wet Days: Annual maximum number of consecutive wet days (days with total precipitation greater than or equal to 0.01 inches)First Freeze Day: Date of the first fall freeze (annual first occurrence of a minimum temperature at or below 32degF in the fall)Growing Degree Days: Growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F) [degree days (degF)]Growing Degree Days Modified: Modified growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F; before calculating the daily average temperatures, daily maximum temperatures above 86°F and daily minimum temperatures below 50°F are set to those values) [degree days (degF)]growing-season: Length of the growing (frost-free) season (the number of days between the last occurrence of a minimum temperature at or below 32degF in the spring and the first occurrence of a minimum temperature at or below 32degF in the fall)Growing Season 28F: Length of the growing season, 28°F threshold (the number of days between the last occurrence of a minimum temperature at or below 28°F in the spring and the first occurrence of a minimum temperature at or below 28°F in the fall)Growing Season 41F: Length of the growing season, 41°F threshold (the number of days between the last occurrence of a minimum temperature at or below 41°F in the spring and the first occurrence of a minimum temperature at or below 41°F in the fall)Heating Degree Days: Heating degree days (annual cumulative number of degrees by which the daily average temperature is less than 65°F) [degree days (degF)]Last Freeze Day: Date of the last spring freeze (annual last occurrence of a minimum temperature at or below 32degF in the spring)Precip Above 99th pctl: Annual total precipitation for all days exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip Annual Total: Annual total precipitation [inches]Precip Days Above 99th pctl: Annual number of days with precipitation exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip 1in: Annual number of days with total precipitation greater than 1 inchPrecip 2in: Annual number of days with total precipitation greater than 2 inchesPrecip 3in: Annual number of days with total precipitation greater than 3 inchesPrecip 4in: Annual number of days with total precipitation greater than 4 inchesPrecip Max 1 Day: Annual highest precipitation total for a single day [inches]Precip Max 5 Day: Annual highest precipitation total over a 5-day period [inches]Daily Avg Temperature: Daily average temperature [degF]Daily Max Temperature: Daily maximum temperature [degF]Temp Max Days Above 99th pctl: Annual number of days with maximum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Max Days Below 1st pctl: Annual number of days with maximum temperature lower than the 1st percentile, calculated with reference to 1976-2005Days Above 100F: Annual number of days with a maximum temperature greater than 100degFDays Above 105F: Annual number of days with a maximum temperature greater than 105degFDays Above 110F: Annual number of days with a maximum temperature greater than 110degFDays Above 115F: Annual number of days with a maximum temperature greater than 115degFTemp Max 1 Day: Annual single highest maximum temperature [degF]Days Above 32F: Annual number of icing days (days with a maximum temperature less than 32degF)Temp Max 5 Day: Annual highest maximum temperature averaged over a 5-day period [degF]Days Above 86F: Annual number of days with a maximum temperature greater than 86degFDays Above 90F: Annual number of days with a maximum temperature greater than 90degFDays Above 95F: Annual number of days with a maximum temperature greater than 95degFTemp Min: Daily minimum temperature [degF]Temp Min Days Above 75F: Annual number of days with a minimum temperature greater than 75degFTemp Min Days Above 80F: Annual number of days with a minimum temperature greater than 80degFTemp Min Days Above 85F: Annual number of days with a minimum temperature greater than 85degFTemp Min Days Above 90F: Annual number of days with a minimum temperature greater than 90degFTemp Min Days Above 99th pctl: Annual number of days with minimum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Min Days Below 1st pctl: Annual number of days with minimum temperature lower than the 1st percentile, calculated with reference to 1976-2005Temp Min Days Below 28F: Annual number of days with a minimum temperature less than 28degFTemp Min Max 5 Day: Annual highest minimum temperature averaged over a 5-day period [degF]Temp Min 1 Day: Annual single lowest minimum temperature [degF]Temp Min 32F: Annual number of frost days (days with a minimum temperature less than 32degF)Temp Min 5 Day: Annual lowest minimum temperature averaged over a 5-day period [degF]For For freeze-related variables:The first fall freeze is defined as the date of the first occurrence of 32degF or lower in the nine months starting midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The last spring freeze is defined as the date of the last occurrence of 32degF or lower in the nine months prior to midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The growing season is defined as the number of days between the last occurrence of 28degF/32degF/41degF or lower in the nine months prior to midnight August 1 and the first occurrence of 28degF/32degF/41degF or lower in the nine months starting August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 28degF/32degF/41degF or lower are excluded from the analysis.No freeze occurrence, value = 999

  14. n

    IAI-Science-ISP3-077-010:Patterns of production and...

    • access.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). IAI-Science-ISP3-077-010:Patterns of production and precipitation-use-efficiency of winter wheat and native grasslands in the central Great Plains of the USA [Dataset]. https://access.earthdata.nasa.gov/collections/C1214155333-SCIOPS
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jun 1, 1998 - May 31, 2001
    Area covered
    Description

    "The Great Plains of the United States is characterized by a large west-east gradient in annual precipitation and a similar large north-south gradient in annual temperature. Native grasslands and winter wheat are found over a large portion of the precipitation and temperature gradients. In this article, we use long-term data to analyze the differences in the patterns in aboveground net primary production and precipitation-use efficiency between wheat and native grassland ecosystems in the central portion of Great Plains, and their relationships to potential water availability (precipitation). Aboveground net primary production of native grasslands shows a large response to precipitation. Aboveground net primary production of winter wheat has a smaller response to changing precipitation. Annual precipitation-use efficiency of native grasslands is unaffected by increases in average annual precipitation, but precipitation-use efficiency of summer-fallow wheat ecosystems decreases substantially with increased average precipitation. Our results suggest that in the wetter portion of the central Great Plains, summer-fallow wheat management is relatively inefficient, because increased water availability results in diminishing returns. Comparisons with data from continuously cropped wheat confirmed this result. Shifts across the region to continuous cropping of wheat potentially could have significant impacts on regional wheat yield, carbon balance, and economic status". To read the full article, access http://link.springer.de/link/service/journals/10021 to obtain information about how to become qualified to read this article.

  15. e

    A Computer-Based Atlas of Global Instrumental Climate Data (DB1003)

    • knb.ecoinformatics.org
    • search.dataone.org
    • +2more
    Updated Apr 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. S. Bradley; L. G. Ahern; F. T. Keimig (2023). A Computer-Based Atlas of Global Instrumental Climate Data (DB1003) [Dataset]. http://doi.org/10.3334/CDIAC/CLI.DB1003
    Explore at:
    Dataset updated
    Apr 7, 2023
    Dataset provided by
    ESS-DIVE
    Authors
    R. S. Bradley; L. G. Ahern; F. T. Keimig
    Time period covered
    Jan 1, 1851 - Dec 31, 1991
    Description

    Color-shaded and contoured images of global, gridded instrumental data have been produced as a computer-based atlas. Each image simultaneously depicts anomaly maps of surface temperature, sea-level pressure, 500-mbar geopotential heights, and percentages of reference-period precipitation. Monthly, seasonal, and annual composites are available in either cylindrical equidistant or northern and southern hemisphere polar projections. Temperature maps are available from 1854 to 1991, precipitation from 1851 to 1989, sea-level pressure from 1899 to 1991, and 500-mbar heights from 1946 to 1991. The source of data for the temperature images is Jones et al.'s global gridded temperature anomalies. The precipitation images were derived from Eischeid et al.'s global gridded precipitation percentages. Grids from the Data Support Section, National Center for Atmospheric Research (NCAR) were the sources for the sea-level-pressure and 500-mbar geopotential-height images. All images are in GIF files (1024 × 822 pixels, 256 colors) and can be displayed on many different computer platforms. Each annual subdirectory contains 141 images, each seasonal subdirectory contains 563 images, and each monthly subdirectory contains 1656 images. The entire atlas requires approximately 340 MB of disk space, but users may retrieve any number of images at one time. For access to the data files, click this link to the CDIAC data transition website: http://cdiac.ess-dive.lbl.gov/ndps/db1003.html This dataset was transferred from the CDIAC Archive and published on ESS-DIVE in 2018 under the project title "Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); University of Massachusetts, Amherst, MA (USA)". In 2023, the project title was updated to "Carbon Dioxide Information Analysis Center (CDIAC); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)" to enable consistent management of all datasets previously hosted by the CDIAC Archive that are now published on ESS-DIVE.

  16. d

    Percent change in mean annual precipitation (1971-2100) under MIROC medres...

    • datadiscoverystudio.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Percent change in mean annual precipitation (1971-2100) under MIROC medres A2 for the Apache-Sitgreaves study area, Arizona, USA [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/cd8365a40789429bb7add942db14f99a/html
    Explore at:
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  17. d

    Percent change in mean annual precipitation between 1971-2000 and 2070-2099...

    • datadiscoverystudio.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Percent change in mean annual precipitation between 1971-2000 and 2070-2099 under Hadley A2 for the Apache-Sitgreaves study area, Arizona, USA [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/cf2cbae5ecc747fb81f8a3e75873fe7a/html
    Explore at:
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  18. a

    USA Soils Map Units

    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    Updated Jun 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). USA Soils Map Units [Dataset]. https://idaho-epscor-gem3-uidaho.hub.arcgis.com/datasets/usa-soils-map-units
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Map_Units.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Resolution/Tolerance: 1 meter/2 metersNumber of Features: 36,543,233Feature Request Limit: 10,000Source: USDA Natural Resources Conservation ServicePublication Date: October 1, 2019ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/rest/servicesData from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the

  19. U.S. Climate Normals 2020: U.S. Daily Climate Normals (1991-2020)

    • catalog.data.gov
    • data.noaa.gov
    • +1more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Centers for Environmental Information/NOAA (Principal Investigator) (2023). U.S. Climate Normals 2020: U.S. Daily Climate Normals (1991-2020) [Dataset]. https://catalog.data.gov/dataset/u-s-climate-normals-2020-u-s-daily-climate-normals-1991-20202
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    The Daily Climate Normals for 1991 to 2020 are 30-year averages of meteorological parameters that provide users the information needed to understand typical climate conditions for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Daily Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs)). All data utilized in the computation of the 1991-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily, but the Daily Normals are adjusted so that they are consistent with the Monthly Normals. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.

  20. a

    USA Soils Map Units (NRCS)

    • resilientma-mapcenter-mass-eoeea.hub.arcgis.com
    Updated Oct 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MA Executive Office of Energy and Environmental Affairs (2021). USA Soils Map Units (NRCS) [Dataset]. https://resilientma-mapcenter-mass-eoeea.hub.arcgis.com/maps/06cd074c27494d748b8050e4fa9de825
    Explore at:
    Dataset updated
    Oct 6, 2021
    Dataset authored and provided by
    MA Executive Office of Energy and Environmental Affairs
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Resolution/Tolerance: 1 meter/2 metersNumber of Features: 36,543,233Feature Request Limit: 10,000Source: USDA Natural Resources Conservation ServicePublication Date: October 1, 2019ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/rest/servicesData from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CECAtlas (2023). North America Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d4b81cb2dc4f4b938964aa1eb9b4b9a9

North America Annual Precipitation

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 19, 2023
Dataset authored and provided by
CECAtlas
License
Area covered
Description

The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

Search
Clear search
Close search
Google apps
Main menu