Ethnic minorities were more likely to be in favor of racially diversifying adverts in the United States, a survey from June 2020 found. The African American demographic was most in favor of change, with 65 percent of respondents in saying they would like to see more racial diversity in ads. The same was true for 49 percent of Hispanics in the country.
This map service summarizes racial and ethnic diversity in the United States in 2012.
The Diversity Index shows the likelihood that two persons chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity). Diversity in the U.S. population is increasing. The diversity score for the entire United States in 2012 is 61.
The data shown is from Esri's 2012 Updated Demographics. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data. This map shows Esri's 2012 estimates using Census 2010 geographies.
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
Diversity in Tech Statistics: In today's tech-driven world, discussions about diversity in the technology sector have gained significant traction. Recent statistics shed light on the disparities and opportunities within this industry. According to data from various sources, including reports from leading tech companies and diversity advocacy groups, the lack of diversity remains a prominent issue. For example, studies reveal that only 25% of computing jobs in the United States are held by women, while Black and Hispanic individuals make up just 9% of the tech workforce combined. Additionally, research indicates that LGBTQ+ individuals are underrepresented in tech, with only 2.3% of tech workers identifying as LGBTQ+. Despite these challenges, there are promising signs of progress. Companies are increasingly recognizing the importance of diversity and inclusion initiatives, with some allocating significant resources to address these issues. For instance, tech giants like Google and Microsoft have committed millions of USD to diversity programs aimed at recruiting and retaining underrepresented talent. As discussions surrounding diversity in tech continue to evolve, understanding the statistical landscape is crucial in fostering meaningful change and creating a more inclusive industry for all. Editor’s Choice In 2021, 7.9% of the US labor force was employed in technology. Women hold only 26.7% of tech employment, while men hold 73.3% of these positions. White Americans hold 62.5% of the positions in the US tech sector. Asian Americans account for 20% of jobs, Latinx Americans 8%, and Black Americans 7%. 83.3% of tech executives in the US are white. Black Americans comprised 14% of the population in 2019 but held only 7% of tech employment. For the same position, at the same business, and with the same experience, women in tech are typically paid 3% less than men. The high-tech sector employs more men (64% against 52%), Asian Americans (14% compared to 5.8%), and white people (68.5% versus 63.5%) compared to other industries. The tech industry is urged to prioritize inclusion when hiring, mentoring, and retaining employees to bridge the digital skills gap. Black professionals only account for 4% of all tech workers despite being 13% of the US workforce. Hispanic professionals hold just 8% of all STEM jobs despite being 17% of the national workforce. Only 22% of workers in tech are ethnic minorities. Gender diversity in tech is low, with just 26% of jobs in computer-related sectors occupied by women. Companies with diverse teams have higher profitability, with those in the top quartile for gender diversity being 25% more likely to have above-average profitability. Every month, the tech industry adds about 9,600 jobs to the U.S. economy. Between May 2009 and May 2015, over 800,000 net STEM jobs were added to the U.S. economy. STEM jobs are expected to grow by another 8.9% between 2015 and 2024. The percentage of black and Hispanic employees at major tech companies is very low, making up just one to three percent of the tech workforce. Tech hiring relies heavily on poaching and incentives, creating an unsustainable ecosystem ripe for disruption. Recruiters have a significant role in disrupting the hiring process to support diversity and inclusion. You May Also Like To Read Outsourcing Statistics Digital Transformation Statistics Internet of Things Statistics Computer Vision Statistics
This map shows a comparison of diversity and median household income in the US by tract. Esri's Diversity Index measures the likelihood that two persons, chosen at random from the same area, belong to different races or ethnic groups. In theory, the index ranges from 0 (no diversity) to 100 (complete diversity). If an area's entire population is divided evenly into two race groups and one ethnic group, then the diversity index equals 50. As more race groups are evenly represented in the population, the diversity index increases. Minorities accounted for 30.9 percent of the population in 2000 and are expected to make up 42.3 percent of the population by 2023. Vintage of data: 2023Areas in a darker orange are less diverse than light blue areas with higher diversity. Median household income is symbolized by size. The national median household income is $58,100 and any household below the national value has the smallest symbol size. The largest size has a median household income over $100,000 per year. Esri Updated Demographics represent the suite of annually updated U.S. demographic data that provides current-year and five-year forecasts for more than two thousand demographic and socioeconomic characteristics, a subset of which is included in this layer. Included are a host of tables covering key characteristics of the population, households, housing, age, race, income, and much more. Esri's Updated Demographics data consists of point estimates, representing July 1 of the current and forecast years.Esri Updated Demographics DocumentationMethodologyUnderstanding Esri’s Updated Demographics portfolioEssential Esri Demographics vocabularyThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. This layer requires an ArcGIS Online subscription and does not consume credits. Please cite Esri when using this data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can obtain descriptions, maps, profiles, and ranks of U.S. metropolitan areas pertaining to quality of life, diversity, and opportunities for racial and ethnic groups in the U.S. BackgroundThe Diversity Data project operates a website for users to explore how U.S. metropolitan areas perform on evidence-based social measures affecting quality of life, diversity and opportunity for racial and ethnic groups in the United States. These indicators capture a broad definition of quality of life and health, including opportunities for good schools, housing, jobs, wages, health and social services, and safe neighborhoods. This is a useful resource for people inter ested in advocating for policy and social change regarding neighborhood integration, residential mobility, anti-discrimination in housing, urban renewal, school quality and economic opportunities. The Diversity Data project is an ongoing project of the Harvard School of Public Health (Department of Society, Human Development and Health). User FunctionalityUsers can obtain a description, profile and rank of U.S. metropolitan areas and compare ranks across metropolitan areas. Users can also generate maps which demonstrate the distribution of these measures across the United States. Demographic information is available by race/ethnicity. Data NotesData are derived from multiple sources including: the U.S. Census Bureau; National Center for Health Statistics' Vital Statistics Natality Birth Data; Natio nal Center for Education Statistics; Union CPS Utilities Data CD; National Low Income Housing Coalition; Freddie Mac Conventional Mortgage Home Price Index; Neighborhood Change Database; Joint Center for Housing Studies of Harvard University; Federal Financial Institutions Examination Council Home Mortgage Disclosure Act (HMD); Dr. Russ Lopez, Boston University School of Public Health, Department of Environmental Health; HUD State of the Cities Data Systems; Agency for Healthcare Research and Quality; and Texas Transportation Institute. Years in which the data were collected are indicated with the measure. Information is available for metropolitan areas. The website does not indicate when the data are updated.
The percent chance that two people picked at random within an area will be of a different race/ethnicity. This number does not reflect which race/ethnicity is predominant within an area. The higher the value, the more racially and ethnically diverse an area. Source: U.S. Bureau of the Census, American Community Survey Years Available: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2017-2021, 2018-2022, 2019-2023
Except for JPMorgan Chase, Citigroup, Capital One and Bank of America, the share of minority employees in the total U.S.-based workforce of the leading U.S. banks was less than ** percent. Among the observed banks, JPMorgan Chase had the most diverse workforce, with ** percent of the employees who self-identified were racial minorities. JPMorgan Chase was followed by Citigroup, where the share of people of color was approximately ** percent. Capital One ranked third in terms of racial diversity. Here, the share of non-white employees in the U.S.-based workforce was **** percent. The share was the lowest at PNC Financial Services, where approximately ** percent of the workforce were non-white.
According to a survey conducted in 2023, ** percent of employed adults who were Black believed that focusing on increasing diversity, equity, and inclusion at work was a good thing in the United States, while ** percent of employed adults who were White shared this belief.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This national, tract-level experienced racial segregation dataset uses data for over 66 million anonymized and opted-in devices in Cuebiq’s Spectus Clean Room data to estimate 15 minute time overlaps of device stays in 38.2m x 19.1m grids across the United States in 2022. We infer a probability distribution of racial backgrounds for each device given their home Census block groups at the time of data collection, and calculate the probability of a diverse social contact during that space and time. These measures are then aggregated to the Census tract and across the whole time period in order to preserve privacy and develop a generalizable measure of the diversity of a place. We propose that this dataset is a better measurement of the segregation and diversity as it is experienced, which we show diverges from standard measurements of segregation. The data can be used by researchers to better understand the determinants of experienced segregation; beyond research, we suggest this data can be used by policy makers to understand the impacts of policies designed to encourage social mixing and access to opportunities such as affordable housing and mixed-income housing, and more.
For the purposes of enhanced privacy, home census block groups were pre-calculated by the data provider, and all calculations are done at the Census tract, with tracts that have more than 20 unique devices over the period of analysis.
In 2022, the share of minorities working at TD Bank in the United States was about ** percent, slightly smaller than in the previous years. Approximately ** percent of the U.S.-based executives identified as minorities. In terms of first and mid-level managers, the share of minorities did not fluctuate greatly in the observed period. In 2019, ** percent of the middle management were minorities, and it increased to **** percent in 2022.
Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students
This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Emergency medical services (EMS) workforce demographics in the United States do not reflect the diversity of the population served. Despite some efforts by professional organizations to create a more representative workforce, little has changed in the last decade. This scoping review aims to summarize existing literature on the demographic composition, recruitment, retention, and workplace experience of underrepresented groups within EMS. Peer-reviewed studies were obtained from a search of PubMed, CINAHL, Web of Science, ProQuest Thesis and Dissertations, and non-peer-reviewed (“gray”) literature from 1960 to present. Abstracts and included full-text articles were screened by two independent reviewers trained on inclusion/exclusion criteria. Studies were included if they pertained to the demographics, training, hiring, retention, promotion, compensation, or workplace experience of underrepresented groups in United States EMS by race, ethnicity, sexual orientation, or gender. Studies of non-EMS fire department activities were excluded. Disputes were resolved by two authors. A single reviewer screened the gray literature. Data extraction was performed using a standardized electronic form. Results were summarized qualitatively. We identified 87 relevant full-text articles from the peer-reviewed literature and 250 items of gray literature. Primary themes emerging from peer-reviewed literature included workplace experience (n = 48), demographics (n = 12), workforce entry and exit (n = 8), education and testing (n = 7), compensation and benefits (n = 5), and leadership, mentorship, and promotion (n = 4). Most articles focused on sex/gender comparisons (65/87, 75%), followed by race/ethnicity comparisons (42/87, 48%). Few articles examined sexual orientation (3/87, 3%). One study focused on telecommunicators and three included EMS physicians. Most studies (n = 60, 69%) were published in the last decade. In the gray literature, media articles (216/250, 86%) demonstrated significant industry discourse surrounding these primary themes. Existing EMS workforce research demonstrates continued underrepresentation of women and nonwhite personnel. Additionally, these studies raise concerns for pervasive negative workplace experiences including sexual harassment and factors that negatively affect recruitment and retention, including bias in candidate testing, a gender pay gap, and unequal promotion opportunities. Additional research is needed to elucidate recruitment and retention program efficacy, the demographic composition of EMS leadership, and the prevalence of racial harassment and discrimination in this workforce.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Diversity Index of Every US County using the Simpson Diversity Index: D = 1 - ∑(n/N)^2 (where n = number of people of a given race and N is the total number of people of all races, to get the probability of randomly selecting two people and getting two people of different races (ecological entropy))
Bank of America's workforce has undergone a significant shift in racial diversity over the past six years. The share of white employees decreased from **** percent in 2019 to **** percent in 2024, marking a notable change in the company's demographic composition. Meanwhile, the representation of Hispanic, Asian, and Black racial groups grew steadily. The second-largest racial group in the observed period was Hispanic, whose share increased from **** to **** percent.
This dataset includes Level 1B (L1B) and Level 2 (L2) data products from the MODIS/ASTER Airborne Simulator (MASTER) instrument. The spectral data were collected as part of the Western Diversity Time Series (WDTS, formerly HyspIRI) program during nine flights aboard a NASA ER-2 aircraft over selected areas of California, U.S, from 2020-09-17 to 2020-10-15. The WDTS program will observe California's ecosystems and provide critical information on natural disasters such as volcanoes, wildfires, and drought. MASTER products can identify vegetation type and health and provide a benchmark for the state of the ecosystems against which future changes can be assessed. Data products include L1B georeferenced multispectral imagery of calibrated radiance in 50 bands covering wavelengths of 0.460 to 12.879 micrometers at approximately 50-meter resolution. Derived L2 data products are emissivity in 5 bands in thermal infrared range (8.58 to 12.13 micrometers) and land surface temperature. The L1B file format is HDF-4, and L2 products are provided in ENVI and KMZ formats. In addition, the dataset includes the flight path, spectral band information, instrument configuration, ancillary notes, and summary information for each deployment, and browse images derived from each L1B data file.
copycat-project/diversity-dataset-mini-v1 dataset hosted on Hugging Face and contributed by the HF Datasets community
This dataset includes Level 1B (L1B) and Level 2 (L2) data products from the MODIS/ASTER Airborne Simulator (MASTER) instrument. The spectral data were collected as part of the Western Diversity Time Series (WDTS, formerly HyspIRI) airborne campaign during nine flights aboard a NASA ER-2 aircraft over selected areas of California and Nevada, U.S., from 2021-02-09 to 2021-04-02. The WDTS campaign will observe California's ecosystems and provide critical information on natural disasters such as volcanoes, wildfires, and drought. MASTER products can identify vegetation type and health and provide a benchmark for the state of the ecosystems against which future changes can be assessed. Data products include L1B georeferenced multispectral imagery of calibrated radiance in 50 bands covering wavelengths of 0.460 to 12.879 micrometers at approximately 50-meter spatial resolution. Derived L2 data products are emissivity in 5 bands in thermal infrared range (8.58 to 12.13 micrometers) and land surface temperature. The L1B file format is HDF-4, and L2 products are provided in ENVI and KMZ formats. In addition, the dataset includes the flight path, spectral band information, instrument configuration, ancillary notes, and summary information for each flight, and browse images derived from each L1B data file.
[Needs More Information]
Dataset Card for dei_article_sentiment
Dataset Summary
Diversity Equity and Inclusion related article title, content, url, sentiment and basis. Basis is a term I use to describe the underline topic related to diveristy I have four at the moment 1 = Gender, 2 = Race, 3 = Disability and 4 = Other.
Supported Tasks and Leaderboards
[Needs More Information]
Languages
English
Dataset Structure
Data Instances… See the full description on the dataset page: https://huggingface.co/datasets/deancgarcia/Diversity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within United States. The dataset can be utilized to gain insights into gender-based income distribution within the United States population, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/united-states-income-distribution-by-gender-and-employment-type.jpeg" alt="United States gender and employment-based income distribution analysis (Ages 15+)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States median household income by gender. You can refer the same here
Ethnic minorities were more likely to be in favor of racially diversifying adverts in the United States, a survey from June 2020 found. The African American demographic was most in favor of change, with 65 percent of respondents in saying they would like to see more racial diversity in ads. The same was true for 49 percent of Hispanics in the country.