Facebook
TwitterStudents will explore U.S. census data to see the spatial differences in the United States’ population. The activity uses a web-based map and is tied to the AP Human Geography benchmarks.
Learning outcomes:
·
Unit 2, A1: Geographical analysis of population
(density, distribute and scale)·
Unit 2, A3: Geographical analysis of population
(composition: age, sex, income, education and ethnicity)·
Unit 2, A4: Geographical analysis of population
(patterns of fertility, mortality and health)
Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries
Facebook
TwitterESRI Data & Maps contains many types of map data at many scales of geography, and the entire dataset can be read directly from the DVD in the media kit. All vector data is provided in Smart Data Compression (SDC) format. The HTML-based Help system contains information about Data & Maps and StreetMap North America, including a complete list of the redistribution rights for each dataset. Please review this information carefully before redistributing any of this data.http://www.library.utoronto.ca/datalib/datart/maplib/data/ESRI/Streetmap_na/help.htm
Facebook
TwitterTree City USA is a national program that recognizes municipal commitment to community forestry. In return for meeting program requirements, Tree City USA participants expect social, economic, and/or environmental benefits. Understanding the geographic distribution and socioeconomic characteristics of Tree City USA communities at the national scale can offer insights into the motivations or barriers to program participation, and provide context for community forestry research at finer scales. In this study, researchers assessed patterns in Tree City USA participation for all U.S. communities with more than 2,500 people according to geography, community population size, and socioeconomic characteristics, such as income, education, and race. Nationally, 23.5% of communities studied were Tree City USA participants, and this accounted for 53.9% of the total population in these communities. Tree City USA participation rates varied substantially by U.S. region, but in each region participation rates were higher in larger communities, and long-term participants tended to be larger communities than more recent enrollees. In logistic regression models, owner occupancy rates were significant negative predictors of Tree City USA participation, education and percent white population were positive predictors in many U.S. regions, and inconsistent patterns were observed for income and population age. The findings indicate that communities with smaller populations, lower education levels, and higher minority populations are underserved regionally by Tree City USA, and future efforts should identify and overcome barriers to participation in these types of communities. This dataset is associated with the following publication: Berland , A., D. Herrmann , and M. Hopton. National Assessment of Tree City USA Participation According to Geography andSocioeconomic Characteristics. Arboriculture & Urban Forestry. International Society of Arboriculture, Champaign, IL, USA, 42(2): 120-130, (2016).
Facebook
TwitterCensus geographic areas are used by the Census Bureau to collect, tabulate, and aggregate decennial census data, and are also used in more frequent demographics reports like the annual American Community Survey (ACS). Three levels of areal geography are available from MassGIS (with layer name in parentheses): Blocks, Block Groups, and TractsSee the datalayer metadata for full details.Map service also available.
Facebook
Twitterhttps://choosealicense.com/licenses/gpl-2.0/https://choosealicense.com/licenses/gpl-2.0/
Dataset contains queries for Problog database of facts about USA geography. Taken from this source
Facebook
TwitterThis layer presents the 2020 U.S. Census State boundaries of the United States in the 50 states and the District of Columbia. This layer is updated annually. The geography is sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrography to add a detailed coastline for cartographic purposes. Attribute fields include 2020 total population from the U.S. Census Public Law 94 data.This ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.
Facebook
Twitterhttps://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for states and equivalent entities in United States of America. Processors and tools are using this data. States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services.
Facebook
TwitterThis layer presents the 2020 U.S. Census Tract boundaries of the United States in the 50 states and the District of Columbia. This layer is updated annually. The geography is sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrography to add a detailed coastline for cartographic purposes. Attribute fields include 2020 total population from the U.S. Census Public Law 94 data.This ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.
Facebook
TwitterThe Counties dataset was updated on October 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529015
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This political map of United States of America shows state and national boundaries, state names and other features.
Facebook
TwitterThis layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2016-2020ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 17, 2022The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Facebook
TwitterThe Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterThis API returns a geography of a specified geography type by the geography id.
Facebook
TwitterThis file was downloaded from https://simplemaps.com/data/us-cities Licence: Creative Commons Attribution 4.0
A simple, accurate and up-to-date database of United States cities and towns.
https://simplemaps.com/data/us-cities
Latitude and longitude data can be used for interactive maps.
Facebook
Twitter2019 US Census All Counties and County Equivalents geospatial data
U.S. Census Bureau; TIGER/Line Shapefiles 2019 Data accessed from: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2019.html
TIGER/Line Shapefiles do not include demographic data, but they do contain geographic entity codes (GEOIDs) that can be linked to the Census Bureau’s demographic data.
The Geographic Areas Reference Manual (GARM) describes in great detail the basic geographic entities the Census Bureau uses (https://www.census.gov/programs-surveys/acs/geography-acs.html).
TIGER Data Products Guide (https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ratios of two shares: (1) share of the number of cited references in the country’s articles and the number of that part of cited references which were published by the country itself. (2) Country’s shares of articles published between 2001 and 2010 (fractionally counted).
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
Facebook
TwitterThis layer shows race and ethnicity data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.   To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P5, P9 Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Facebook
TwitterStudents will explore U.S. census data to see the spatial differences in the United States’ population. The activity uses a web-based map and is tied to the AP Human Geography benchmarks.
Learning outcomes:
·
Unit 2, A1: Geographical analysis of population
(density, distribute and scale)·
Unit 2, A3: Geographical analysis of population
(composition: age, sex, income, education and ethnicity)·
Unit 2, A4: Geographical analysis of population
(patterns of fertility, mortality and health)
Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries