Important Note: This item is in mature support as of June 2021 and is no longer updated. This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada
description: This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps; abstract: topography, topographic, land cover, physical, TOPO!imageryBaseMapsEarthCover (Imagery, basemaps, and land cover)USA Topo Maps
This digital terrain model represents historical elevations along the valley of the North Fork Toutle River upstream of its confluence with the Green River in Cowlitz and Skamania Counties, Washington. Most elevations were derived from U.S. Geological Survey 1:62,500 scale topographic quadrangle maps published from 1953 to 1958 that were derived from aerial photographs taken in 1951 and 1952. Elevations representing the bed of Spirit Lake, at the head of the valley, were derived from a bathymetric map based on survey data from 1974. Elevations are in units of meters and have been adjusted to the North American Vertical Datum of 1988.
The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) is an ongoing multiinstitutional, international effort addressing the response of biogeography and biogeochemistry to environmental variability in climate and other drivers in both space and time domains. The objectives of VEMAP are the intercomparison of biogeochemistry models and vegetationtype distribution models (biogeography models) and determination of their sensitivity to changing climate, elevated atmospheric carbon dioxide concentrations, and other sources of altered forcing. The VEMAP data set includes three georeferencing and three cell area variables. Data Citation: This data set should be cited as follows: Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, H. H. Fisher, A. Grimsdell, VEMAP Participants, C. Daly, and E. R. Hunt, Jr. 2002. VEMAP Phase I Database, revised. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
The Digital Raster Graphic (DRG) is a raster image of a scanned USGS topographic map including the collar information, georeferenced to the UTM grid. This version of the Digital Raster Graphic (DRG) has been clipped to remove the collar (white border of the map) and has been reprojected to geographic coordinates.
From https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map :"The National Map is a suite of products and services that provide access to base geospatial information to describe the landscape of the United States and its territories. The National Map embodies 11 primary products and services and numerous applications and ancillary services. The National Map supports data download, digital and print versions of topographic maps, geospatial data services, and online viewing. Customers can use geospatial data and maps to enhance their recreational experience, make life-saving decisions, support scientific missions, and for countless other activities. Nationally consistent geospatial data from The National Map enable better policy and land management decisions and the effective enforcement of regulatory responsibilities. The National Map is easily accessible for display on the Web through such products as topographic maps and services and as downloadable data. The geographic information available from The National Map includes boundaries, elevation, geographic names, hydrography, land cover, orthoimagery, structures, and transportation. The majority of The National Map effort is devoted to acquiring and integrating medium-scale (nominally 1:24,000 scale) geospatial data for the eight base layers from a variety of sources and providing access to theresulting seamless coverages of geospatial data. The National Map also serves as the source of base mapping information for derived cartographic products, including 1:24,000 scale US Topo maps and georeferenced digital files of scanned historic topographic maps. Data sets and products from The National Map are intended for use by government, industry, and academia—focusing on geographic information system (GIS) users—as well as the public, especially in support of recreation activities. Other types of georeferenced or mapping information can be added within The National Map Viewer or brought in with The National Map data into a GIS to create specific types of maps or map views and (or) to perform modeling or analyses."
USGS Historical Quadrangle in GeoPDF. The USGS Historical Topographic Map Collection (HTMC) is scanning all scales and all editions of topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
USGS Historical Quadrangle in GeoPDF. The USGS Historical Quadrangle Scanning Project (HQSP) is scanning all scales and all editions of topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884.
The color shaded relief map of the conterminous U.S. was created from 15 arc-second digital elevation model (DEM) data. The data set traces its origins back to the early 1960's when .01 inch scans of 1:250,000 USGS topographic sheets were produced by the Defense Mapping Agency and converted to 3 second data by the USGS National Cartographic Information Center. The 15 second grid cell data (Michael Webring, written communication) used in this report dates from the mid-1980's with occasional local and regional updates. The 3 second grid nodes were averaged with a 6x6 operator and decimated to 15 second grid cells which is about the resolution of the original .01 inch data set. The 3 second data is available as 950 separate 1x1 degree quadrangles from the USGS EROS Data Center.
Additional information available at "http://pubs.usgs.gov/of/of99-011/1readme.html"
[Summary provided by the USGS.]
.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated: Radar Image Radar Image with Color as Height Radar Image with Color Wrapped Fringes -Shaded Relief Perspective View with B/W Radar Image Overlaid Perspective View with Radar Image Overlaid, Color as Height Perspective View of Shaded Relief Perspective View with Landsat or other Image Overlaid Contour Map - B/W with Contour Lines Stereo Pair Anaglypgh The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
The major source of geo-referenced soil data of Latin America and the Caribbean at a scale of 1:5 M is the Soil Map of the World (SMW) of FAO/Unesco (1974-1981). For this part of the globe the information was collected before 1974, the year of publication of the Latin American map sheets. Collection of soil survey information by the national institutes responsible for soil survey continued after publication and a large amount of new data is available at the national level. Since 1991 the FAO is actualizing the SMW information of Latin America with support from national soils institutes in the concerned countries. This has resulted in the acquisition of new 1:5 M soil maps of most Latin American countries. New soil maps with a revised soil classification legend (FAO, 1990) of Argentina, Brazil, Chile, Colombia, Ecuador, Mexico, Paraguay, Peru, Uruguay and Venezuela were obtained by FAO through subcontracts with the national soil institutes. Since 1988 the World Soils and Terrain Database Programme (SOTER) is operational in various Latin American countries at a scale of 1:1 M, in particular in Argentina, Brazil and Uruguay with UNEP funding. The major objective of the SOTER methodology is to use information technology, like geographic information systems and database management systems, for the creation of a world soils and terrain database with digital maps and attributes and their interpretations. At the moment SOTER databases at scale 1:1 M are available for the whole of Uruguay, the northern part of Argentina (460,000 km2) and the south of Brazil (100,000 km2). In 1992 FAO formally endorsed SOTER and decided to use the methodology to store and update soils and terrain data at a global level. The SOTER Procedures Manual was published jointly by FAO, ISRIC, ISSS and UNEP in 1993 and in the following year also as No. 74 in the series of World Soil Resources Bulletins. During the same year an agreement was signed between FAO and UNEP to develop a soils and terrain database of Latin America at scale 1:5 M, jointly with the updating of the SMW. ISRIC was asked to coordinate the activities of the SOTERLAC 1:5 M project in the countries to be included.
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
Download US Geological Survey topographic maps in multiple formats, scales, and years, including 1:24,000-scale topo maps, using the USGS topoView web application.Learn how to use topoView: https://youtu.be/UCTIvQqVr4E
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
The Digital Raster Graphic (DRG) is a raster image of a scanned USGS topographic map including the collar information, georeferenced to the UTM grid. A DRG is useful as a source or background layer in a GIS, as a means to perform quality assurance on other digital products, and as a source for the collection and revision of DLG data. DRG's can also be merged with other digital data, e.g. DEM's or DOQ's, to produce a hybrid digital file. To download this resource, please see the link provided.
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
The Digital Raster Graphic (DRG) is a raster image of a scanned USGS topographic map including the collar information, georeferenced to the UTM grid. A DRG is useful as a source or background layer in a GIS, as a means to perform quality assurance on other digital products, and as a source for the collection and revision of DLG data. DRG's can also be merged with other digital data, e.g. DEM's or DOQ's, to produce a hybrid digital file. To download this resource, please see the link provided. To download this resource, please see the link provided.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This is a topographical map of western Tutuila.
The dataset is a digital elevation model (DEM), in GeoTiff format, of the bathymetry of Dierks Lake, Howard and Sevier Counties, Arkansas. The extent of the DEM represents the area encompassing the extent of the aerial Light Detection And Ranging (LiDAR) data used in the project. Horizontal and vertical units are expressed in meters. The DEM was derived from an LAS dataset (an industry-standard binary format for storing aerial LiDAR data) created from point datasets stored in “Dierks2018_gdb”. The point datasets include aerial LiDAR data from a survey conducted in 2016 by the National Resources Conservation Service (U.S. Geological Survey, 2017), point data from digitized historical topographic maps, and bathymetric data from a survey conducted in June 2018 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for single- and multi-beam sonar surveys similar to those described by Wilson and Richards (2006) and Richards and Huizinga (2018). In April 2019, it was discovered that some of the bathymetric data collected in shallow and/or tree-ridden areas of the lake had been omitted, resulting in errors in the final products. The missing data were located and added to the geodatabase, the final products re-created, metadata edited accordingly, and the data release reviewed. In response to the second review, in select shallow and/or tree-ridden tributary arms of the lake where bathymetric data were sparse, points along the stream channels, digitized from historical topographic maps representing the pre-impoundment topography, were added to the dataset; select areas of erroneous bathymetric data were edited; and contours at the dam were adjusted based on the historical topographic maps. First release: March 2019; revised August 2019 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf Water Science Center using the "Point of Contact" link on the landing page on ScienceBase. References: Richards, J.M. and Huizinga, R.J., 2018, Bathymetric contour map, surface area and capacity table, and bathymetric difference map for Clearwater Lake near Piedmont, Missouri, 2017: U.S. Geological Survey Scientific Investigations Map 3409: 1 sheet, https://doi.org/10.3133/sim3409; U.S. Geological Survey, 2017, Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection: U.S. Geological Survey, https://nationalmap.gov/3DEP; Wilson, G.L., and Richards, J.M., 2006, Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs: U.S. Geological Survey Scientific Investigations Report 2006-5208, https://pubs.usgs.gov/sir/2006/5208/.
The Digital Raster Graphic (DRG) is a raster image of a scanned USGS topographic map including the collar information, georeferenced to the UTM grid. A DRG is useful as a source or background layer in a GIS, as a means to perform quality assurance on other digital products, and as a source for the collection and revision of DLG data. DRG's can also be merged with other digital data, e.g. DEM's or DOQ's, to produce a hybrid digital file. To download this resource, please see the link provided.
Important Note: This item is in mature support as of June 2021 and is no longer updated. This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada