100+ datasets found
  1. a

    North America Lakes and Rivers

    • hub.arcgis.com
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Lakes and Rivers [Dataset]. https://hub.arcgis.com/datasets/4cf66bf1ae124bf59d1144b789529385/explore?layer=5&uiVersion=content-views
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    CECAtlas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This North American Environmental Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. Any data outside of Canada, Mexico, and the United States of America included in the North American Environmental Atlas data sets is strictly to complete the context of the data.The North American Environmental Atlas – Lakes and Rivers dataset displays the coastline, linear hydrographic features (major rivers, streams, and canals), and area hydrographic features (major lakes and reservoirs) of North America at a reference spatial scale of 1:1,000,000.This map offers a seamless integration of hydrographic features derived from cartographic products generated by Natural Resources Canada (NRCan), United States Geological Survey (USGS), National Institute of Statistics and Geography, (Instituto Nacional de Estadística y Geografía-Inegi), National Water Commission (Comisión Nacional del Agua-Conagua).This current version of the North America Lakes and Rivers dataset supersedes the version published by the Commission for Environmental Cooperation in 2011.Files Download

  2. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • oregonwaterdata.org
    • +6more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  3. d

    National Hydrography Dataset (NHD)

    • search.dataone.org
    Updated Nov 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NHD Technical Support (2014). National Hydrography Dataset (NHD) [Dataset]. https://search.dataone.org/view/National_Hydrography_Dataset_%28NHD%29.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    NHD Technical Support
    Time period covered
    Jan 1, 1999
    Area covered
    Description

    The National Hydrography Dataset (NHD) is a comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to form reaches, which provide the framework for linking water-related data to the NHD surface waterdrainage network. These linkages enable the analysis and display of these water-related data in upstream and downstream order.

    The NHD is based upon the content of USGS Digital Line Graph (DLG) hydrography data integrated with reach-related information from the EPA Reach File Version 3 (RF3). The NHD supersedes DLG and RF3 by incorporating them, not by replacing them. Users of DLG or RF3 will find the National Hydrography Dataset both familiar and greatly expanded and refined.

    While initially based on 1:100,000-scale data, the NHD is designed to incorporate and encourage the development of higher resolution data required by many users.

    The NHD data are distributed as tarred and compressed ARC/INFO workspaces. Each workspace contains the data for a single hydrologic cataloging unit. Cataloging units are drainage basins averaging 700 square miles (1,813 square kilometers) in area. Within a workspace, there are three ARC/INFO coverages plus several related INFO tables. There is also a folder containing the metadata text files.

    The NHD data support many applications, such as: making maps; geocoding observations (i.e., the means to link data to water features); modeling the flow of water along the Nation's waterways (e.g., information about the direction of flow, when combined with other data, can help users model the transport of materials in hydrographic networks, and other applications); and cooperative data maintenance.

  4. a

    National Hydrography Dataset Plus Version 2.1 Monthly Flow and Velocity

    • hub.arcgis.com
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2024). National Hydrography Dataset Plus Version 2.1 Monthly Flow and Velocity [Dataset]. https://hub.arcgis.com/datasets/fws::usgs-huwbd-and-nhdplus-v2-1-flow-and-velocity?layer=11
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.

    For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.

    Dataset Summary
    Phenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa
    Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000
    Resolution/Tolerance: 1 meter/2 meters
    Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinks
    Feature Request Limit: 5,000
    Source: EPA and USGS
    Publication Date: March 13, 2019

    Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.

    Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.

  5. C

    National Hydrography Data - NHD and 3DHP

    • data.cnra.ca.gov
    • data.ca.gov
    • +2more
    Updated Jul 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). National Hydrography Data - NHD and 3DHP [Dataset]. https://data.cnra.ca.gov/dataset/national-hydrography-dataset-nhd
    Explore at:
    pdf(4856863), zip(39288832), website, pdf(182651), pdf(1634485), pdf(437025), pdf(3684753), csv(12977), pdf(1175775), pdf, zip(4657694), zip(578260992), arcgis geoservices rest api, zip(13901824), pdf(9867020), pdf(3932070), web videos, zip(1647291), zip(15824984), zip(73817620), zip(128966494), zip(972664), zip(10029073), pdf(1436424)Available download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    California Department of Water Resources
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

    DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.

    For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.

    In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.

    The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).

    Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.

  6. Data from: Watershed Boundary Dataset (WBD)

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subcommittee on Spatial Water Data (2023). Watershed Boundary Dataset (WBD) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Watershed_Boundary_Dataset_WBD_/24661371
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Natural Resources Conservation Servicehttp://www.nrcs.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Subcommittee on Spatial Water Data
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, is composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats. The Watershed Boundary Dataset is being developed under the leadership of the Subcommittee on Spatial Water Data, which is part of the Advisory Committee on Water Information (ACWI) and the Federal Geographic Data Committee (FGDC). The USDA Natural Resources Conservation Service (NRCS), along with many other federal agencies and national associations, have representatives on the Subcommittee on Spatial Water Data. As watershed boundary geographic information systems (GIS) coverages are completed, statewide and national data layers will be made available via the Geospatial Data Gateway to everyone, including federal, state, local government agencies, researchers, private companies, utilities, environmental groups, and concerned citizens. The database will assist in planning and describing water use and related land use activities. Resources in this dataset:Resource Title: Watershed Boundary Dataset (WBD). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/dataset/?cid=nrcs143_021630 Web site for the Watershed Boundary Dataset (WBD), including links to:

    Review Data Availability (Status Maps) Obtain Data by State, County, or Other Area Obtain Seamless National Data offsite link image
    Geospatial Data Tools National Technical and State Coordinators Information about WBD dataset

  7. a

    State of Colorado Basemap

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • geodata.colorado.gov
    • +1more
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Colorado (2023). State of Colorado Basemap [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/62f677708c5040399e490cc58505cdec
    Explore at:
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    State of Colorado
    Area covered
    Description

    This web map created by the Colorado Governor's Office of Information Technology GIS team, serves as a basemap specific to the state of Colorado. The basemap includes general layers such as counties, municipalities, roads, waterbodies, state parks, national forests, national wilderness areas, and trails.Layers:Layer descriptions and sources can be found below. Layers have been modified to only represent features within Colorado and are not up to date. Layers last updated February 23, 2023. Colorado State Extent: Description: “This layer provides generalized boundaries for the 50 States and the District of Columbia.” Notes: This layer was filtered to only include the State of ColoradoSource: Esri Living Atlas USA States Generalized Boundaries Feature LayerState Wildlife Areas:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state wildlife areas layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer hosted in ArcGIS Online Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerMunicipal Boundaries:Description: "Boundaries data from the State Demography Office of Colorado Municipalities provided by the Department of Local Affairs (DOLA)"Source: Colorado Information Marketplace Municipal Boundaries in ColoradoCounties:Description: “This layer presents the USA 2020 Census County (or County Equivalent) boundaries of the United States in the 50 states and the District of Columbia. It is updated annually as County (or County Equivalent) boundaries change. The geography is sources from US Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrology to add a detailed coastline for cartographic purposes. Geography last updated May 2022.” Notes: This layer was filtered to only include counties in the State of ColoradoSource: Esri USA Census Counties Feature LayerInterstates:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: Interstates are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointU.S. Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: U.S. Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointState Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: State Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointMajor Roads:Description: Authoritative data from the Colorado Department of Transportation representing major roads Source: Colorado Department of Transportation Major Roads REST EndpointLocal Roads:Description: Authoritative data from the Colorado Department of Transportation representing local roads Source: Colorado Department of Transportation Local Roads REST EndpointRail Lines:Description: Authoritative data from the Colorado Department of Transportation representing rail lines Source: Colorado Department of Transportation Rail Lines REST EndpointCOTREX Trails:Description: “The Colorado Trail System, now titled the Colorado Trail Explorer (COTREX), endeavors to map every trail in the state of Colorado. Currently their are nearly 40,000 miles of trails mapped. Trails come from a variety of sources (USFS, BLM, local parks & recreation departments, local governments). Responsibility for accuracy of the data rests with the source.These data were last updated on 2/5/2019” Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerNHD Waterbodies:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include waterbodies in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerNHD Flowlines:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include flowline features in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerState Parks:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state parks layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerDenver Parks:Description: "This dataset should be used as a reference to locate parks, golf courses, and recreation centers managed by the Department of Parks and Recreation in the City and County of Denver. Data is based on parcel ownership and does not include other areas maintained by the department such as medians and parkways. The data should be used for planning and design purposes and cartographic purposes only."Source: City and County of Denver Parks REST EndpointNational Wilderness Areas:Description: “A parcel of Forest Service land congressionally designated as wilderness such as National Wilderness Area.”Notes: This layer was filtered to only include National Wilderness Areas in the State of ColoradoSource: United States Department of Agriculture National Wilderness Areas REST EndpointNational Forests: Description: “A depiction of the boundaries encompassing the National Forest System (NFS) lands within the original proclaimed National Forests, along with subsequent Executive Orders, Proclamations, Public Laws, Public Land Orders, Secretary of Agriculture Orders, and Secretary of Interior Orders creating modifications thereto, along with lands added to the NFS which have taken on the status of 'reserved from the public domain' under the General Exchange Act. The following area types are included: National Forest, Experimental Area, Experimental Forest, Experimental Range, Land Utilization Project, National Grassland, Purchase Unit, and Special Management Area.”Notes: This layer was filtered to only include National Forests in the State of ColoradoSource: United States Department of Agriculture Original Proclaimed National Forests REST Endpoint

  8. d

    Bathymetric and supporting data for various water supply lakes in...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Bathymetric and supporting data for various water supply lakes in north-central and west-central Missouri, 2020 [Dataset]. https://catalog.data.gov/dataset/bathymetric-and-supporting-data-for-various-water-supply-lakes-in-north-central-and-west-c
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Missouri
    Description

    Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. In June and July 2020, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources and in collaboration with various cities in north- and west-central Missouri, completed bathymetric surveys of 12 lakes using a marine-based mobile mapping unit, which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Bathymetric data were collected as the vessel traversed longitudinal transects to provide nearly complete coverage of the lake. The MBES was electronically tilted in some areas to improve data collection along the shoreline, in coves, and in areas that are shallower than about 2.0 meters deep (the practical limit of reasonable and safe data collection with the MBES). At some lakes, supplemental data were collected in shallow areas using an acoustic Doppler current profiler (ADCP) mounted on a remote-controlled vessel equipped with a differential global positioning system (DGPS). Bathymetric quality-assurance data also were collected at each lake to evaluate the vertical accuracy of the gridded bathymetric point data from the MBES. As part of the survey at each of these lakes, one or more reference marks or temporary bench marks were established to provide a point of known location and elevation from which the water surface could be measured or another survey could be referenced at a later date. In addition, the elevation of a primary spillway or intake was surveyed, when present. These points were surveyed using a real-time kinematic (RTK) Global Navigation Satellite System (GNSS) receiver connected to the Missouri Department of Transportation real-time network (RTN), which provided real-time survey-grade horizontal and vertical positioning, using field procedures as described in Rydlund and Densmore (2012) for a Level II real-time positioning survey. Mozingo Lake and Maryville Reservoir were surveyed in June 2020 as part of the group of lakes surveyed in 2020. However, extraordinary interest in the bathymetry at Mozingo Lake by the city of Maryville necessitated these data being released earlier than the other 2020 lakes (Huizinga and others, 2021, 2022). The MBES data can be combined with light detection and ranging (lidar) data to prepare a bathymetric map and a surface area and capacity table for each lake. These data also can be used to compare the current bathymetric surface with any previous bathymetric surface. Data from each of the remaining 10 lakes surveyed in 2020 are provided in ESRI Shapefile format (ESRI, 2021). Each of the lakes surveyed in 2020 except Higginsville has a child page containing the metadata and two zip files, one for the bathymetric data, and the other for the bathymetric quality-assurance data. Data from the surveys at the Upper and Lower Higginsville Reservoirs are in two zip files on a single child page, one for the bathymetric data and one for the bathymetric quality assurance data of both lakes, and a single summary metadata file. The zip files follow the format of "####2020_bathy_pts.zip" or "####2020_QA_raw.zip," where "####" is the lake name. Each of these zip files contains a shapefile with an attribute table. Attribute/column labels of each table are described in the "Entity and attribute" section of the metadata file. The various reference marks and additional points from all the lake surveys are provided in ESRI Shapefile format (ESRI, 2021) with an attribute table on the main landing page. Attribute/column labels of this table are described in the "Entity and attribute" section of the metadata file. References Cited: Environmental Systems Research Institute, 2021, ArcGIS: accessed May 20, 2021, at https://www.esri.com/en-us/arcgis/about-arcgis/overview Huizinga, R.J., 2014, Bathymetric surveys and area/capacity tables of water-supply reservoirs for the city of Cameron, Missouri, July 2013: U.S. Geological Survey Open-File Report 2014–1005, 15 p., https://doi.org/10.3133/ofr20141005. Huizinga, R.J., Oyler, L.D., and Rivers, B.C., 2022, Bathymetric contour maps, surface area and capacity tables, and bathymetric change maps for selected water-supply lakes in northwestern Missouri, 2019 and 2020: U.S. Geological Survey Scientific Investigations Map 3486, 12 sheets, includes 21-p. pamphlet, https://doi.org/10.3133/sim3486. Huizinga R.J., Rivers, B.C., and Oyler, L.D., 2021, Bathymetric and supporting data for various water supply lakes in northwestern Missouri, 2019 and 2020 (ver. 1.1, September 2021): U.S. Geological Survey data release, https://doi.org/10.5066/P92M53NJ. Richards, J.M., 2013, Bathymetric surveys of selected lakes in Missouri—2000–2008: U.S. Geological Survey Open-File Report 2013–1101, 9 p. with appendix, https://pubs.usgs.gov/of/2013/1101. Rydlund, P.H., Jr., and Densmore, B.K., 2012, Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey: U.S. Geological Survey Techniques and Methods, book 11, chap. D1, 102 p. with appendixes, https://doi.org/10.3133/tm11D1.

  9. S

    3D Maps

    • sead-published.ncsa.illinois.edu
    Updated Aug 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Campbell, Karen (https://www.linkedin.com/in/karen-campbell-1336965); Morin, Paul (2016). 3D Maps [Dataset]. http://doi.org/10.5967/M0NP22DR
    Explore at:
    Dataset updated
    Aug 9, 2016
    Dataset provided by
    http://www.nationaldataservice.org/
    Authors
    Campbell, Karen (https://www.linkedin.com/in/karen-campbell-1336965); Morin, Paul
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.

    This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu

    Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.

    Maps are best when viewed with RED/CYAN anaglyph glasses!

    A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.

    World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.

    Continental United States: 3-D grayscale map of the Lower 48.

    Western United States: 3-D grayscale map of the Western United States with state boundaries.

    Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.

    Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.

    Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.

    Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.

    Minneapolis, MN: 3-D topographical map of South Minneapolis.

    Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.

    North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.

    St. Paul, MN: 3-D topographical map of St. Paul.

    Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.

    Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.

    Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.

    Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.

    Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.

    Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.

    Blaine, MN: 3-D map of Blaine and the Mississippi River.

    White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.

    Maple Grove, MN: 3-D topographical map of the NW suburbs of the Twin Cities.

    Minnesota River: 3-D topographical map of the Minnesota River Valley highlighting the river bend in Mankato.

    St. Croix River: 3-D topographical map of the St. Croix extending from Taylors Falls to the Mississippi confluence.

    Mississippi River, Lake Pepin: 3-D topographical map of the confluence of Chippewa Creek and the Mississippi River.

    Red Wing, MN: 3-D topographical map of Redwing, MN on the Mississippi River.

    Winona, Minnesota: 3-D topographical map of Winona, MN highlighting the Mississippi River.

    Cannon Falls, MN: 3-D topographical map of Cannon Falls area.

    Rochester, MN: 3-D topographical map of Rochester and the surrounding area.

    Northfield, MN: 3-D topographical map of Northfield and the surrounding area.

    St. Louis River, MN: 3-D map of the St. Louis River and Duluth, Minnesota.

    Lake Itasca, MN: 3-D map of the source of the Mississippi River.

    Elmore, MN: 3-D topographical map of Elmore, MN in south-central Minnesota.

    Glencoe, MN: 3-D topographical map of Glencoe, MN.

    New Prague, MN: 3-D topographical map of the New Prague in south-central Minnesota.

    Plainview, MN: 3-D topographical map of Plainview, MN.

    Waterville-Morristown: 3-D map of the Waterville-Morris area in south-central Minnesota.

    Eau Claire, WI: 3-D map of Eau Claire highlighting abandon river channels.

    Dubuque, IA: 3-D topographical map of Dubuque and the Mississippi River.

    Londonderry, NH: 3-D topographical map of Londonderry, NH.

    Santa Cruz, CA: 3-D topographical map of Santa Cruz, California.

    Crater Lake, OR: 3-D topographical map of Crater Lake, Oregon.

    Mt. Rainier, WA: 3-D topographical map of Mt. Rainier in Washington.

    Grand Canyon, AZ: 3-D topographical map of the Grand Canyon.

    District of Columbia: 3-D map highlighting the confluence of the rivers and the Mall.

    Ireland: 3-D grayscale map of Ireland.

    New Jersey: 3-D grayscale map of New Jersey.

    SP Crater, AZ: 3-D map of random craters in the San Francisco Mountains.

    Mars Water Features: 3-D grayscale map showing surface water features from Mars.

  10. a

    Named Waterbody Set

    • ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com
    • data.ct.gov
    • +4more
    Updated Jun 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2023). Named Waterbody Set [Dataset]. https://ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com/maps/9a8ee1e074df4c1c9aacd53d4f045750
    Explore at:
    Dataset updated
    Jun 6, 2023
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Named Waterbody is a 1:24,000-scale, polygon and line feature-based layer that includes all named waterbodies depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. Named Waterbody features include water, dams, flow connectors, aqueducts, canals, ditches, shorelines, and islands. The layer does not include the marsh areas, tidal flats, rocks, shoals, or channels typically shown on USGS 7.5 minute topographic quadrangle maps. However, the layer includes linear (flow) connector features that fill in gaps between river and stream features where water passes through marshes or underground through pipelines and tunnels. Note that connectors represent general pathways and do not represent the exact location or orientation of actual underground pipelines, tunnels, aqueducts, etc. The Named Waterbody layer is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict related information such as dams and islands. Line features represent single-line rivers and streams, flow connectors, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of shorelines, dams, and closure lines separating adjacent water features. The Named Waterbody layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify waterbody features by type, cartographically represent (symbolize) waterbody features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe waterbody feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The Named Waterbody layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. Derived from the Hydrography layer, the Named Waterbody layer was originally published in 1999. The 2005 edition includes the same water features published in 1999, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors and includes the flow connector features. Connecticut Named Waterbody Polygon includes the polygon features of a layer named Named Waterbody. Named Waterbody is a 1:24,000-scale, polygon and line feature-based layer that includes all named waterbodies depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. Named Waterbody features include water, dams, flow connectors, aqueducts, canals, ditches, shorelines, and islands. The layer does not include the marsh areas, tidal flats, rocks, shoals, or channels typically shown on USGS 7.5 minute topographic quadrangle maps. However, the layer includes linear (flow) connector features that fill in gaps between river and stream features where water passes through marshes or underground through pipelines and tunnels. Note that connectors represent general pathways and do not represent the exact location or orientation of actual underground pipelines, tunnels, aqueducts, etc. The Named Waterbody layer is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict related information such as dams and islands. Line features represent single-line rivers and streams, flow connectors, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of shorelines, dams, and closure lines separating adjacent water features. The Named Waterbody layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify waterbody features by type, cartographically represent (symbolize) waterbody features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe waterbody feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The Named Waterbody layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. Derived from the Hydrography layer, the Named Waterbody layer was originally published in 1999. The 2005 edition includes the same water features published in 1999, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors and includes the flow connector features.

  11. c

    OpenStreetMap Waterways for North America

    • data.cityofrochester.gov
    • anrgeodata.vermont.gov
    • +1more
    Updated Mar 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). OpenStreetMap Waterways for North America [Dataset]. https://data.cityofrochester.gov/maps/b24d982186714fd08de77a8a91016016
    Explore at:
    Dataset updated
    Mar 3, 2020
    Dataset authored and provided by
    Open_Data_Admin
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    Note: This content was created by OpenStreetMap, not the City of Rochester. You can find more about them here.This feature layer provides access to OpenStreetMap (OSM) waterways data for North America, which is updated every 1-2 minutes with the latest edits. In the context of this map, the term "waterway" describes rivers, streams, and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this map, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.The map is zoomed in to the Rochester area, but users can use the minus (-) sign to zoom out. If you would like to see a specific location, you can enter it into the search bar at the top right section of the map interface.

  12. d

    Maps of water depth derived from satellite images of selected reaches of the...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Maps of water depth derived from satellite images of selected reaches of the American, Colorado, and Potomac Rivers acquired in 2020 and 2021 (ver. 2.0, September 2024) [Dataset]. https://catalog.data.gov/dataset/maps-of-water-depth-derived-from-satellite-images-of-selected-reaches-of-the-american-colo
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Colorado, United States
    Description

    Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as input were acquired by the SuperDove cubesats comprising the PlanetScope constellation, but the original images cannot be redistributed due to licensing restrictions; the end products derived from these images are provided instead. The large number of cubesats in the PlanetScope constellation allows for frequent temporal coverage and the neural network-based approach takes advantage of this high density time series of information by estimating depth via one of four NNDR methods described in the manuscript: 1. Mean-spec: the images are averaged over time and the resulting mean image is used as input to the NNDR. 2. Mean-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is averaged to obtain the final depth map. 3. NN-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is then used as input to a second, ensembling neural network that essentially weights the depth estimates from the individual images so as to optimize the agreement between the image-derived depth estimates and field measurements of water depth used for training; the output from the ensembling neural network serves as the final depth map. 4. Optimal single image: a separate NNDR is applied independently to each image in the time series and only the image that yields the strongest agreement between the image-derived depth estimates and the field measurements of water depth used for training is used as the final depth map. MATLAB (Version 24.1, including the Deep Learning Toolbox) source code for performing this analysis is provided in the function NN_depth_ensembling.m and the figure included on this landing page provides a flow chart illustrating the four different neural network-based depth retrieval methods. As examples of the resulting models, MATLAB *.mat data files containing the best-performing neural network model for each site are provided below, along with a file that lists the PlanetScope image identifiers for the images that were used for each site. To develop and test this new NNDR approach, the method was applied to satellite images from three rivers across the U.S.: the American, Colorado, and Potomac. For each site, field measurements of water depth available through other data releases were used for training and validation. The depth maps produced via each of the four methods described above are provided as GeoTIFF files, with file name suffixes that indicate the method employed: X_mean-spec.tif, X_mean-depth.tif, X_NN-depth.tif, and X-single-image.tif, where X denotes the site name. The spatial resolution of the depth maps is 3 meters and the pixel values within each map are water depth estimates in units of meters.

  13. a

    Major Rivers of the United States as Lines

    • cest-cusec.hub.arcgis.com
    Updated May 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2021). Major Rivers of the United States as Lines [Dataset]. https://cest-cusec.hub.arcgis.com/datasets/arcgis-content::major-rivers-of-the-united-states-as-lines
    Explore at:
    Dataset updated
    May 11, 2021
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer is created from the National Hydrography Dataset Plus Version 2.1 layer. A filter has been set to limit the display to rivers with an August flow greater than 1,000cfs. The filter value can be adjusted to show more or fewer rivers.The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams.For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.

  14. C

    Streams and Waterbodies of the United States

    • data.cnra.ca.gov
    • data.amerigeoss.org
    Updated May 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ocean Data Partners (2019). Streams and Waterbodies of the United States [Dataset]. https://data.cnra.ca.gov/dataset/streams-and-waterbodies-of-the-united-states
    Explore at:
    Dataset updated
    May 8, 2019
    Dataset authored and provided by
    Ocean Data Partners
    Area covered
    United States
    Description

    This map layer shows areal and linear water features of the United States, Puerto Rico, and the U.S. Virgin Islands. The original file was produced by joining the individual State hydrography layers from the 1:2,000,000- scale Digital Line Graph (DLG) data produced by the USGS. This map layer was formerly distributed as Hydrography Features of the United States. This is a revised version of the January 2003 map layer.

  15. d

    Maps of water depth derived from satellite images of the American River...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Maps of water depth derived from satellite images of the American River acquired in October 2020 [Dataset]. https://catalog.data.gov/dataset/maps-of-water-depth-derived-from-satellite-images-of-the-american-river-acquired-in-octobe
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    American River, United States
    Description

    Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as input were acquired by the SuperDove cubesats comprising the PlanetScope constellation, but the original images cannot be redistributed due to licensing restrictions; the end products derived from these images are provided instead. The large number of cubesats in the PlanetScope constellation allows for frequent temporal coverage and the neural network-based approach takes advantage of this high density time series of information by estimating depth via one of four NNDR methods described in the manuscript: 1. Mean-spec: the images are averaged over time and the resulting mean image is used as input to the NNDR. 2. Mean-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is averaged to obtain the final depth map. 3. NN-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is then used as input to a second, ensembling neural network that essentially weights the depth estimates from the individual images so as to optimize the agreement between the image-derived depth estimates and field measurements of water depth used for training; the output from the ensembling neural network serves as the final depth map. 4. Optimal single image: a separate NNDR is applied independently to each image in the time series and only the image that yields the strongest agreement between the image-derived depth estimates and the field measurements of water depth used for training is used as the final depth map. MATLAB (Version 24.1, including the Deep Learning Toolbox) for performing this analysis is provided in the function NN_depth_ensembling.m available on the main landing page for the data release of which this is a child item, along with a flow chart illustrating the four different neural network-based depth retrieval methods. To develop and test this new NNDR approach, the method was applied to satellite images from the American River near Fair Oaks, CA, acquired in October 2020. Field measurements of water depth available through another data release (Legleiter, C.J., and Harrison, L.R., 2022, Field measurements of water depth from the American River near Fair Oaks, CA, October 19-21, 2020: U.S. Geological Survey data release, https://doi.org/10.5066/P92PNWE5) were used for training and validation. The depth maps produced via each of the four methods described above are provided as GeoTIFF files, with file name suffixes that indicate the method employed: American_mean-spec.tif, American_mean-depth.tif, American_NN-depth.tif, and American-single-image.tif. The spatial resolution of the depth maps is 3 meters and the pixel values within each map are water depth estimates in units of meters.

  16. U

    Lake Bistineau Flood Map Files

    • data.usgs.gov
    • datadiscoverystudio.org
    • +4more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Ensminger; Brian Breaker; John Storm; Claire Rose; Kata Watson, Lake Bistineau Flood Map Files [Dataset]. http://doi.org/10.5066/F7T43R6C
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Paul Ensminger; Brian Breaker; John Storm; Claire Rose; Kata Watson
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Mar 8, 2016 - Mar 19, 2016
    Area covered
    Lake Bistineau
    Description

    Heavy rainfall occurred across Louisiana during March 8-19, 2016, as a result of a massive, slow-moving southward dip in the jet stream, which moved eastward across Mexico, then neared the Gulf Coast, funneling deep tropical moisture into parts of the Gulf States and the Mississippi River Valley. The storm caused major flooding in north-central and southeastern Louisiana. Digital flood-inundation maps for a 20.1-mile reach within the community of Minden near Lake Bistineau in Bossier Parish and Bienville Parish, LA was created by the U.S. Geological Survey (USGS) in cooperation with Federal Emergency Management Agency (FEMA) to support response and recovery operations following a March 8-19, 2016 flood event. The inundation maps depict estimates of the areal extent and depth of flooding corresponding to 5 high-water marks (HWM) identified and surveyed by the USGS following the flood event.

  17. A

    Lakes, Rivers and Glaciers

    • data.amerigeoss.org
    • datasets.ai
    • +2more
    jpeg, pdf
    Updated Jul 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canada (2019). Lakes, Rivers and Glaciers [Dataset]. https://data.amerigeoss.org/dataset/16e8a362-d8be-53b7-acb8-e3f9c5cd54ef
    Explore at:
    pdf, jpegAvailable download formats
    Dataset updated
    Jul 22, 2019
    Dataset provided by
    Canada
    Description

    Contained within the 4th Edition (1974) of the Atlas of Canada is a map that shows the lakes, rivers and glaciers as well as the major drainage areas. Provincial and territorial boundaries are shown, but otherwise there are no other names or symbols shown on the Canadian land surface.

  18. a

    Connecticut Hydrography Set

    • ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com
    • data.ct.gov
    • +5more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2019). Connecticut Hydrography Set [Dataset]. https://ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com/maps/ef85cf0c55394065a8a74ea97fbd7ede
    Explore at:
    Dataset updated
    Oct 28, 2019
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Connecticut Hydrography Set:

    Connecticut Hydrography Line includes the line features of a layer named Hydrography. Hydrography is a 1:24,000-scale, polygon and line feature-based layer that includes all hydrography features depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. These hydrography features include waterbodies, inundation areas, marshes, dams, aqueducts, canals, ditches, shorelines, tidal flats, shoals, rocks, channels, and islands. Hydrography is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict inundation areas, marshes, dams, aqueducts, canals, tidal flats, shoals, rocks, channels, and islands shown on the USGS 7.5 minute topographic quadrangle maps. Line features represent single-line rivers and streams, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of natural shorelines, manmade shorelines, dams, closure lines separating adjacent waterbodies, and the apparent limits for tidal flats, rocks, and areas of marsh. The layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify hydrography features by type, cartographically represent (symbolize) hydrography features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. This layer was originally published in 1994. The 2005 edition includes the same water features published in 1994, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors.

    Connecticut Hydrography Polygon includes the polygon features of a layer named Hydrography. Hydrography is a 1:24,000-scale, polygon and line feature-based layer that includes all hydrography features depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. These hydrography features include waterbodies, inundation areas, marshes, dams, aqueducts, canals, ditches, shorelines, tidal flats, shoals, rocks, channels, and islands. Hydrography is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict inundation areas, marshes, dams, aqueducts, canals, tidal flats, shoals, rocks, channels, and islands shown on the USGS 7.5 minute topographic quadrangle maps. Line features represent single-line rivers and streams, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of natural shorelines, manmade shorelines, dams, closure lines separating adjacent waterbodies, and the apparent limits for tidal flats, rocks, and areas of marsh. The layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify hydrography features by type, cartographically represent (symbolize) hydrography features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. This layer was originally published in 1994. The 2005 edition includes the same water features published in 1994, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors.

  19. u

    Glacial Geology Map of the Toolik Lake and Upper Kuparuk River Region,...

    • data.ucar.edu
    • arcticdata.io
    • +1more
    image
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew W. Balser; Donald A. (Skip) Walker; James A. Anderson; Thomas D. Hamilton (2025). Glacial Geology Map of the Toolik Lake and Upper Kuparuk River Region, Alaska [Dataset]. https://data.ucar.edu/dataset/glacial-geology-map-of-the-toolik-lake-and-upper-kuparuk-river-region-alaska
    Explore at:
    imageAvailable download formats
    Dataset updated
    Aug 1, 2025
    Authors
    Andrew W. Balser; Donald A. (Skip) Walker; James A. Anderson; Thomas D. Hamilton
    Time period covered
    May 1, 2003
    Area covered
    Description

    This data set consists of a digital glacial geology map of the Toolik and upper Kuparuk River region, Alaska, USA. The map covers a 740 km2 area on Alaska's North Slope, in the northern foothills of the Brooks Range. The map contains polygon and line features, annotation, and legends and is distributed as an ArcInfo GIS interchange (.e00) file or shapefiles. The data set describes substrate only and does not include topographic, hydrographic, or cultural features.

  20. Permafrost of the Usa River Basin, Version 1 - Dataset - NASA Open Data...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Permafrost of the Usa River Basin, Version 1 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/permafrost-of-the-usa-river-basin-version-1-92632
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    United States
    Description

    The map consists of ESRI Shapefiles of the Usa River basin, Russia, including Lek-Vorkuta and Bolshaya Rogovaya. There are four data layers in the data set: a base map layer, a permafrost layer, and two key (permafrost) areas. Each data layer comprises several sub-layers. The map is based on a UTM 41 projection with the WGS 1984 spheroid. Parameters include permafrost temperature and degree of continuity; permafrost temperature classes, lithology, and stratigraphy; thermokarst, pingos, mass ground ice, and topography, lakes, large rivers (in streams), rivers, and watershed boundary. Data are available via ftp.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CECAtlas (2023). North America Lakes and Rivers [Dataset]. https://hub.arcgis.com/datasets/4cf66bf1ae124bf59d1144b789529385/explore?layer=5&uiVersion=content-views

North America Lakes and Rivers

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 26, 2023
Dataset authored and provided by
CECAtlas
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

This North American Environmental Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. Any data outside of Canada, Mexico, and the United States of America included in the North American Environmental Atlas data sets is strictly to complete the context of the data.The North American Environmental Atlas – Lakes and Rivers dataset displays the coastline, linear hydrographic features (major rivers, streams, and canals), and area hydrographic features (major lakes and reservoirs) of North America at a reference spatial scale of 1:1,000,000.This map offers a seamless integration of hydrographic features derived from cartographic products generated by Natural Resources Canada (NRCan), United States Geological Survey (USGS), National Institute of Statistics and Geography, (Instituto Nacional de Estadística y Geografía-Inegi), National Water Commission (Comisión Nacional del Agua-Conagua).This current version of the North America Lakes and Rivers dataset supersedes the version published by the Commission for Environmental Cooperation in 2011.Files Download

Search
Clear search
Close search
Google apps
Main menu