7 datasets found
  1. Z

    GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIT Climate & Sustainability Consortium (2025). GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13207715
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    MIT Climate & Sustainability Consortium
    MacDonell, Danika
    Bashir, Noman
    Borrero, Micah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary

    Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.

    Relevant Links

    Link to the online version of the tool (requires creation of a free user account).

    Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.

    Funding

    This dataset was produced with support from the MIT Climate & Sustainability Consortium.

    Original Data Sources

    These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:

    Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)

    faf5_freight_flows/*.geojson

    trucking_energy_demand.geojson

    highway_assignment_links_*.geojson

    infrastructure_pooling_thought_experiment/*.geojson

    Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.

    Shapefile for FAF5 Regions

    Shapefile for FAF5 Highway Network Links

    FAF5 2022 Origin-Destination Freight Flow database

    FAF5 2022 Highway Assignment Results

    Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.

    License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.

    Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.

    Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070

    Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.

    Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644

    grid_emission_intensity/*.geojson

    Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.

    eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.

    eGRID database

    Shapefile with eGRID subregion boundaries

    Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.

    Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.

    US_elec.geojson

    US_hy.geojson

    US_lng.geojson

    US_cng.geojson

    US_lpg.geojson

    Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.

    These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

    daily_grid_emission_profiles/*.geojson

    Hourly emission intensity data obtained from ElectricityMaps.

    Original data can be downloaded as csv files from the ElectricityMaps United States of America database

    Shapefile with region boundaries used by ElectricityMaps

    License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal

    Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.

    Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.

    gen_cap_2022_state_merged.geojson

    trucking_energy_demand.geojson

    Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.

    U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.

    Annual electricity generation by state

    Net summer capacity by state

    Shapefile with U.S. state boundaries

    Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.

    electricity_rates_by_state_merged.geojson

    Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.

    Electricity rate by state

    Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.

    demand_charges_merged.geojson

    demand_charges_by_state.geojson

    Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.

    Historical demand charge dataset

    The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').

    Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.

    eastcoast.geojson

    midwest.geojson

    la_i710.geojson

    h2la.geojson

    bayarea.geojson

    saltlake.geojson

    northeast.geojson

    Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.

    The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.

    The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.

    Shapefile for Bay Area country boundaries

    Shapefile for counties in Utah

    Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.

    Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.

    Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.

    License for Utah boundaries: Creative Commons 4.0 International License.

    incentives_and_regulations/*.geojson

    State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.

    Data was collected manually from the State Laws and Incentives database.

    Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.

    These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

    costs_and_emissions/*.geojson

    diesel_price_by_state.geojson

    trucking_energy_demand.geojson

    Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.

    In

  2. o

    US State Boundaries

    • public.opendatasoft.com
    • data.wu.ac.at
    csv, excel, geojson +1
    Updated Jun 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US State Boundaries [Dataset]. https://public.opendatasoft.com/explore/dataset/us-state-boundaries/
    Explore at:
    json, csv, geojson, excelAvailable download formats
    Dataset updated
    Jun 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset represents States and equivalent entities, which are the primary governmental divisions of the United States. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.

  3. CA Geographic Boundaries

    • data.ca.gov
    shp
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). CA Geographic Boundaries [Dataset]. https://data.ca.gov/dataset/ca-geographic-boundaries
    Explore at:
    shp(10153125), shp(136046), shp(2597712)Available download formats
    Dataset updated
    May 3, 2024
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Description

    This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.

  4. n

    North Carolina State and County Boundary Polygons

    • nconemap.gov
    • hub.arcgis.com
    • +1more
    Updated Jun 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of North Carolina - Emergency Management (2020). North Carolina State and County Boundary Polygons [Dataset]. https://www.nconemap.gov/datasets/NCEM-GIS::north-carolina-state-and-county-boundary-polygons
    Explore at:
    Dataset updated
    Jun 11, 2020
    Dataset authored and provided by
    State of North Carolina - Emergency Management
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The North Carolina State and County Boundary vector polygon data provides location information for North Carolina State and County Boundary lines derived from the best available survey and/or Geographic Information System (GIS) data. Sources for information are the North Carolina Geodetic Survey (NCGS), NC Department of Transportation (NCDOT), United States Geological Survey (USGS), and field surveys conducted by licensed surveyors in North Carolina and neighboring states that have been approved and recorded in their respective counties. North Carolina Geodetic Survey assists counties on a cooperative basis (NC General Statute 153A-18) in defining and monumenting the location of uncertain or disputed boundaries as established by law. Some counties have completed boundary surveys for at least a portion of their county boundary. However, the majority of county boundaries have not been surveyed and are represented by the best currently available data from GIS sources, including NCDOT county maps (which originally came from the USGS) and updated county parcel maps.

  5. Z

    CoastSeg: estimate of zone of potential shoreline change, California and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Buscombe, Daniel (2024). CoastSeg: estimate of zone of potential shoreline change, California and southeast USA Atlantic (FL, GA, SC, NC), in geoJSON format. [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8174966
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset authored and provided by
    Buscombe, Daniel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Southeastern United States, Florida, North Carolina, South Carolina, California, United States
    Description

    CoastSeg: estimate of zone of potential shoreline change, California and southeast USA Atlantic (FL, GA, SC, NC), in geoJSON format.

    Data have been made by Daniel Buscombe, Marda Science.

    Data cover the shorelines of five states

    A single geoJSON file per region. Data outline the extent of potential shoreline change.

    A 30-m vector defining the average shoreline, and a 30-m vector defining the limit of erodible material, were constructed and merged, then buffered, and manually edited.

    It is designed to be used in conjunction with the program CoastSeg https://github.com/Doodleverse/CoastSeg , for masking shoreline estimates outside of reasonable spatial bounds.

  6. a

    USGS Recent Earthquakes - Idaho

    • the-idaho-map-open-data-idaho.hub.arcgis.com
    Updated Dec 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Idaho (2024). USGS Recent Earthquakes - Idaho [Dataset]. https://the-idaho-map-open-data-idaho.hub.arcgis.com/items/0d4ac885da1845ebbec2539d70353ae2
    Explore at:
    Dataset updated
    Dec 1, 2024
    Dataset authored and provided by
    State of Idaho
    Area covered
    Description

    This is a live feed from a GeoJSON showing earthquakes larger than 2.5 magnitude in the last 30 days. Beyond 30 days they will be on the Historical Earthquakes layer here. The URL to the GeoJSON is:https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.geojson

  7. U

    A national dataset of rasterized building footprints for the U.S.

    • data.usgs.gov
    • catalog.data.gov
    Updated Feb 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mehdi Heris; Nathan Foks; Kenneth Bagstad; Austin Troy (2020). A national dataset of rasterized building footprints for the U.S. [Dataset]. http://doi.org/10.5066/P9J2Y1WG
    Explore at:
    Dataset updated
    Feb 28, 2020
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Mehdi Heris; Nathan Foks; Kenneth Bagstad; Austin Troy
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2020
    Area covered
    United States
    Description

    The Bing Maps team at Microsoft released a U.S.-wide vector building dataset in 2018, which includes over 125 million building footprints for all 50 states in GeoJSON format. This dataset is extracted from aerial images using deep learning object classification methods. Large-extent modelling (e.g., urban morphological analysis or ecosystem assessment models) or accuracy assessment with vector layers is highly challenging in practice. Although vector layers provide accurate geometries, their use in large-extent geospatial analysis comes at a high computational cost. We used High Performance Computing (HPC) to develop an algorithm that calculates six summary values for each cell in a raster representation of each U.S. state: (1) total footprint coverage, (2) number of unique buildings intersecting each cell, (3) number of building centroids falling inside each cell, and area of the (4) average, (5) smallest, and (6) largest area of buildings that intersect each cell. These values a ...

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MIT Climate & Sustainability Consortium (2025). GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13207715

GeoJSON files for the MCSC's Trucking Industry Decarbonization Explorer (Geo-TIDE)

Explore at:
Dataset updated
Feb 18, 2025
Dataset provided by
MIT Climate & Sustainability Consortium
MacDonell, Danika
Bashir, Noman
Borrero, Micah
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Summary

Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.

Relevant Links

Link to the online version of the tool (requires creation of a free user account).

Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.

Funding

This dataset was produced with support from the MIT Climate & Sustainability Consortium.

Original Data Sources

These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:

Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)

faf5_freight_flows/*.geojson

trucking_energy_demand.geojson

highway_assignment_links_*.geojson

infrastructure_pooling_thought_experiment/*.geojson

Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.

Shapefile for FAF5 Regions

Shapefile for FAF5 Highway Network Links

FAF5 2022 Origin-Destination Freight Flow database

FAF5 2022 Highway Assignment Results

Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.

License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.

Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.

Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070

Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.

Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644

grid_emission_intensity/*.geojson

Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.

eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.

eGRID database

Shapefile with eGRID subregion boundaries

Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.

Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.

US_elec.geojson

US_hy.geojson

US_lng.geojson

US_cng.geojson

US_lpg.geojson

Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.

US_elec.geojson

US_hy.geojson

US_lng.geojson

US_cng.geojson

US_lpg.geojson

Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.

These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

daily_grid_emission_profiles/*.geojson

Hourly emission intensity data obtained from ElectricityMaps.

Original data can be downloaded as csv files from the ElectricityMaps United States of America database

Shapefile with region boundaries used by ElectricityMaps

License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal

Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.

Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.

gen_cap_2022_state_merged.geojson

trucking_energy_demand.geojson

Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.

U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.

Annual electricity generation by state

Net summer capacity by state

Shapefile with U.S. state boundaries

Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.

electricity_rates_by_state_merged.geojson

Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.

Electricity rate by state

Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.

demand_charges_merged.geojson

demand_charges_by_state.geojson

Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.

Historical demand charge dataset

The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').

Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.

eastcoast.geojson

midwest.geojson

la_i710.geojson

h2la.geojson

bayarea.geojson

saltlake.geojson

northeast.geojson

Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.

The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.

The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.

Shapefile for Bay Area country boundaries

Shapefile for counties in Utah

Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.

Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.

Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.

License for Utah boundaries: Creative Commons 4.0 International License.

incentives_and_regulations/*.geojson

State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.

Data was collected manually from the State Laws and Incentives database.

Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.

These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.

costs_and_emissions/*.geojson

diesel_price_by_state.geojson

trucking_energy_demand.geojson

Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.

In

Search
Clear search
Close search
Google apps
Main menu