Important Note: This item is in mature support as of June 2021 and is no longer updated. This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada
Important Note: The USA Topo Maps raster tile layer is in mature support as of June 2021 and no longer updated. The USA Topo Maps (US Edition) map presents land cover and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.This basemap is available in the United States Vector Basemaps gallery and uses the Hybrid Reference Layer (US Edition) vector tile layer and USA Topo Maps.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
description: This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps; abstract: topography, topographic, land cover, physical, TOPO!imageryBaseMapsEarthCover (Imagery, basemaps, and land cover)USA Topo Maps
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This political map of United States of America shows state and national boundaries, state names and other features.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Digital orthographic imagery datasets contain georeferenced images of the Earth's surface, collected by a sensor in which object displacement has been removed for sensor distortions and orientation, and terrain relief. Digital orthoimages have the geometric characteristics of a map and image qualities of a photograph. (Source: Circular A-16, p. 16)
Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.
The sediment map of the Continental Margin Mapping Program (CONMAP) series is a compilation of grain-size data produced by the U.S. Geological Survey (USGS) and includes both published and unpublished studies. Sediment was classified using the 1929 Wentworth grain-size scale and the 1954 Shepard scheme of sediment classification. Certain grain-size categories are combined because of the paucity of some sediment textures. True boundaries between sediment types are highly irregular or gradational. This is due to textural variability not characterized at this scale, and because the accuracy of the navigational systems used during the earlier studies is limited. Sediment classification reflects the dominant surficial sediment type for that area and does not infer that other sediment types are not present. Blank parts of the maps indicate areas where data are insufficient to infer sediment type. This data layer is supplied primarily as a gross overview and to show general textural trends.
© U.S. Geological Survey This layer is a component of Physical Oceanographic and Marine Habitat.
MarineCadastre.gov themed service for public consumption featuring layers related to the Physical and Oceanographic and Marine Habitat themes. This map service presents spatial information about MarineCadastre.gov services across the United States and Territories in the Web Mercator projection. The service was developed by the National Oceanic and Atmospheric Administration (NOAA), but may contain data and information from a variety of data sources, including non-NOAA data. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© MarineCadastre.gov
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to http://nationalmap.gov/gnis.html.
This is a polygon coverage of Physiographic Divisions in the conterminous United States. It was automated from Fenneman's 1:7,000,000-scale map, "Physical Divisions of the United States," which is based on eight major 1946 divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock types and structure, and geologic and geomorphic history.
The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including the terms of use, visit us online.The full Kansas geospatial catalog is administered by the Kansas Data Access & Support Center (DASC) and can be found at the following URL: https://hub.kansasgis.org/
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
description: This dataset includes high quality (800 Dots Per Inch - DPI), 24 bit color images of Minnesota's original Public Land Survey (PLS) plats created during the first government land survey of the state from 1848 to 1907. Currently housed at the Office of the Secretary of State, these plats were created by the U.S. Surveyor General's Office. This collection of more than 3,600 maps also includes later General Land Office (GLO) and the Bureau of Land Management (BLM) maps - up to the year 2001. Minnesota's survey plat maps serve as the fundamental legal records for real estate in the state; all property titles and descriptions stem from them. They also serve as an essential resource for surveyors and as an analytical tool for the state's physical geography prior to European settlement. Finally, they serve as a testimony to years and years of hard work by the surveying community, often under challenging conditions. In recent years the deteriorating physical condition of the older maps and the needs of technologically more sophisticated researchers, who require access to the maps, have made handling the original paper records increasingly less practical. To meet this challenge, the Office of the Secretary of State, the State Archives of the Minnesota Historical Society, the Minnesota Department of Transportation, MnGeo (formerly the Land Management Information Center - LMIC) and the Minnesota Association of County Surveyors collaborated in a digitization project which produced images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes worth of data. Funding was provided by the Minnesota Department of Transportation.; abstract: This dataset includes high quality (800 Dots Per Inch - DPI), 24 bit color images of Minnesota's original Public Land Survey (PLS) plats created during the first government land survey of the state from 1848 to 1907. Currently housed at the Office of the Secretary of State, these plats were created by the U.S. Surveyor General's Office. This collection of more than 3,600 maps also includes later General Land Office (GLO) and the Bureau of Land Management (BLM) maps - up to the year 2001. Minnesota's survey plat maps serve as the fundamental legal records for real estate in the state; all property titles and descriptions stem from them. They also serve as an essential resource for surveyors and as an analytical tool for the state's physical geography prior to European settlement. Finally, they serve as a testimony to years and years of hard work by the surveying community, often under challenging conditions. In recent years the deteriorating physical condition of the older maps and the needs of technologically more sophisticated researchers, who require access to the maps, have made handling the original paper records increasingly less practical. To meet this challenge, the Office of the Secretary of State, the State Archives of the Minnesota Historical Society, the Minnesota Department of Transportation, MnGeo (formerly the Land Management Information Center - LMIC) and the Minnesota Association of County Surveyors collaborated in a digitization project which produced images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes worth of data. Funding was provided by the Minnesota Department of Transportation.
This raster depicts the percentage of lithological the compressive strength, measured as uniaxial compressive strength (in megaPascals, MPa) of surface or near surface geology. We derived these rasters by calculating the average strength for each map unit in combined surficial-bedrock geologic maps. We used state geologic maps (Preliminary Integrated Geologic Map Databases for the United States, Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272), which depict surficial geology instead of bedrock when the surficial layers are sufficiently deep. For the state maps that do not incorporate surficial geology (i.e., midwestern states), we overlaid surficial geologic map units with thicknesses greater than 100 feet (from Soller and Reheis [2004]) to produce combined surficial-bedrock geologic maps that were similar to other states. We characterized geology based on the 201 different lithologies that the Geologic Map Database lists as occurring in the conterminous United States. Because some of these lithologies are known to have physical attributes that vary widely, we created an additional 50 lithologic classes based on the common modifiers used in the geologic unit descriptions to better parse physical variability within the lithologies (e.g., tuff and nontuff for volcanic rocks). Modifiers were assigned base on descriptions of geologic formations obtained through either the Lexicon of Geologic Names of the United States or literature searches. Nineteen lithologic classes were not characterized because the class was not a specific rock type (e.g., mélange, water, and landslide) or no data was available to characterize it. These classes were characterized as no data. We translated each state’s combined surficial-bedrock geologic maps into characteristics following the methods in Olson and Hawkins (2012) by assigning an estimate of each map unit’s strength to every occurrence of that map unit in the combined surficial-bedrock geologic map. This estimate was calculated as the average of literature or database values of the respective property for each lithological class contained within the map unit weighted by the prevalence of each lithological class within the map unit. The accompanying Excel workbook (Lith-Physical.xls) contains a summary of all of the average geochemical characteristics for each lithology (“Lith Summary” tab) and tabs for each individual lithology that include the source of each record (e.g., originating from the Earth Chem Database or the specific literature reference), as well as the calculations used to determine the measure of central tendency (mean or median depending on the data). The final national raster was created by merging each of the individual state rasters. Users should be cognizant that some differences will exist in chemical and physical characterizations across state lines that are caused by unreconciled differences in lithologic descriptions or mapping scales used among the underlying state source maps.
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
This dataset provides gridded average annual wetland salinity concentrations in practical salinity units (PSU) at 30-meter resolution within 24 coastal estuary sites in the United States predicted for 2020. Salinity in estuaries can serve as a proxy for sulfate concentration, which can inhibit methanogenesis. Data were derived from a hybrid approach to mapping salinity as a continuous variable using a combination of physical watershed and stream characteristics, optical remote sensing based on vegetation characteristics, and climate variables. Data are provided in cloud-optimized GeoTIFF format covering 33 Hydrologic Unit Code 8-digit (HUC8) watersheds to the extent of palustrine and estuarine wetlands as defined by NOAA's 2016 Coastal Change Analysis Program (C-CAP) Coastal Land Cover layer. Additionally, model outputs are provided in comma separated values (CSV) files, and code scripts are provided in a compressed (*.zip) file.
Contains physical information on commercial facilities at the principal U.S. Coastal, Great Lakes and Inland Ports. The data consists of listings of port area's waterfront facilities, including information on berthing, cranes, transit sheds, grain elevators, marine repair plants, fleeting areas, and docking and storage facilities. Collection of data is performed on a rotational basis to ensure on-site accuracy at each facility.
© The National Waterway Network was created on behalf of the Research and Innovative Technology Administration's Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S. Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
This layer is a georeferenced raster image of a map of the United States, Canada, Mexico, Central America, and the West India Islands, with portions of Venezuela and Granada. The original map was created and published by J.M. Atwood in 1851. The map shows the Gold Regions of California as well as routes over land and by Isthmus to California and Oregon. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. A scanned veriosn of this map was georeferenced by the Center for Spatial and Textual Analysis (CESTA) at Stanford University. This map is part of a selection of georeferenced historic maps from the David Rumsey Map Collection at Stanford University.
https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use
Binary raster dataset (.txt format) containing flood susceptibility maps related to 100-year river floods occurring in the continental U.S. These mapping products were derived through terrain analysis and a technique of pattern classification performed on DEMs obtained from HydroSHEDS (http://hydrosheds.cr.usgs.gov/overview.php) with a 3 arc-second resolution (0.00083333 degree, approximatively 90 m at the equator). Specifically, the flood-prone areas were identified by applying a linear binary classifier based upon the Geomorphic Flood Index (Manfreda et al., 2015; Samela et al., 2015; Samela et al., 2016 ). The raster maps have a 90 m resolution and are geo-referenced. The coordinate system of the maps is UTM (Universal Transverse Mercator) Zone 17N, the projection is Transverse Mercator, and the geodetic system is NAD (North American Datum) 1983. To simplify the management and the use of the data, the continental U.S. was divided into eighteen major water resources regions according to the hydrologic units identified by the United States Geological Survey.
This workbook summarizes geophysical data for each lithology contained within the USGS Preliminary Integrated Geologic Map Databases for the United States (Open File Reports 2004-1355, 2005-1305, 2005-1323, 2005-1324, 2005-1325, 2005-1351, and 2006-1272). The geophysical attributes in the “Lith Summary” spreadsheet (tab) are measures of central tendency for all publically available measurements at the time of creation for 251 lithologies, reported as rock uniaxial compressive strength measured in megapascals (MPa) and hydraulic conductivity to water measured in micrometers/second. Further details on how data were summarized and sources for geochemical data are contained in the “ReadMe” spreadsheet (tab).
In 1984, the U.S. Geological Survey (USGS) began a program to map deep water portions of the Exclusive Economic Zone (EEZ) by selecting the long-range side scan sonar system GLORIA (Geological Long-Range Inclined ASDIC).
The USGS selected side-scan sonar as the mapping tool because it could be used to obtain information on geologic processes. The intensity of back-scattered sound from the seafloor is a function of the gradient or slope of the seafloor, surface roughness, and sediment characteristics such as texture. The darkness or brightness of a feature or an area on the sonographs and completed mosaics is therefore a function of how much sound is reflected from the seafloor. The recorded digital data are processed and used to construct digital maps of the seafloor.
© U.S. Geological Survey This layer is a component of Physical Oceanographic and Marine Habitat.
MarineCadastre.gov themed service for public consumption featuring layers related to the Physical and Oceanographic and Marine Habitat themes. This map service presents spatial information about MarineCadastre.gov services across the United States and Territories in the Web Mercator projection. The service was developed by the National Oceanic and Atmospheric Administration (NOAA), but may contain data and information from a variety of data sources, including non-NOAA data. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© MarineCadastre.gov
Important Note: This item is in mature support as of June 2021 and is no longer updated. This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada