53 datasets found
  1. e

    Race in the US by Dot Density

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    • +1more
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Race in the US by Dot Density [Dataset]. https://coronavirus-resources.esri.com/maps/71df79b33d4e4db28c915a9f16c3074e
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?

  2. a

    2010 Population Density in the United States

    • hub.arcgis.com
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2017). 2010 Population Density in the United States [Dataset]. https://hub.arcgis.com/maps/bd27b64a3274493d900606a62c6137da
    Explore at:
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map shows the population density and total population in the United States in 2010. This is shown by state, county, tract, and block group. The color shows the population per square mile (population density), while the size of each feature shows the total population living there. This is a valuable way to represent population by understanding the quantity and density of the people living there. Areas with high population density are more tightly packed, while low population density means the population is more spread out.The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.

  3. a

    Population density - Black - Map Service

    • hub.arcgis.com
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damian's Organization (2012). Population density - Black - Map Service [Dataset]. https://hub.arcgis.com/maps/damian::population-density-black-map-service
    Explore at:
    Dataset updated
    Aug 15, 2012
    Dataset authored and provided by
    Damian's Organization
    Area covered
    Description

    This map shows density surfaces derived from the 2010 US Census block points.This data shows % of people who identified themselves as 'single race' and 'Black'The block points were interpolated using the density function to a 2km x 2km grid of the continental US (with water and coastal data masks). There are many stories in these Maps:- What is that clean North/South Line through the center? Why do so many people live East of that line?- Notice the paths of the towns in the west – why are they so linear? And it seems there is a pattern to the spaces between the towns, why?- Looking at the ethnic maps, what explains the patterns? Look at the % Native American map – what are the areas of higher values? (note I did not make a % Asian map as at this scale there was not enough % to show any significant clusters.)

  4. A

    United States: High Resolution Population Density Maps + Demographic...

    • data.amerigeoss.org
    csv +2
    Updated Nov 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). United States: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://data.amerigeoss.org/th/dataset/united-states-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    geotiff(371290), geotiff(1776499), csv(739022265), geotiff(231977), geotiff(116587981), geotiff(1117383), geotiff(614476002), geotiff(304019), geotiff(2895), csv(483753848), geotiff(199544098), geotiff(224182623), geotiff(124627362), geotiff(237058), csv(472969656), geotiff(26946380), csv(489231061), geotiff(1228665), geotiff(405664), geotiff(550808683), geotiff(1532704), csv(487815277), geotiff(183428692), csv(685438176), csv(394330534), csv(485656695), geotiff(124039499), geotiff(469990091), geotiff(11461), csv(394996827), geotiff(34907364), geotiff(157250075), geotiff(3728), geotiff(170821611), geotiff(673517573), geotiff(1659759), geotiff(125397), geotiff(234451), geotiff(235352906), geotiff(93419790), csv(372023378), geotiff(5998), geotiff(48567), geotiff(52959901), geotiff(46501506), geotiff(61425), csv(474849010), geotiff(6551882), geotiff(390755), geotiff(115398457), geotiff(106036740), geotiff(115081607), geotiff(20024613), geotiff(235417782), geotiff(2093905), geotiff(6086942), gdal virtual format(16491), geotiff(48083), geotiff(1762232), geotiff(34651551), geotiff(273238), geotiff(30387688), geotiff(40913), geotiff(349586), geotiff(208940973), geotiff(1791166), geotiff(223427143), csv(371942136), geotiff(365873), geotiff(575702), csv(394139438), csv(394960076), geotiff(305108), geotiff(34077058), csv(599533500), geotiff(612496510), geotiff(671100977), geotiff(154041022)Available download formats
    Dataset updated
    Nov 23, 2021
    Dataset provided by
    UN Humanitarian Data Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    These high-resolution maps estimate not only the number of people living within 30-meter grid tiles, but also provide insights on demographics at unprecedentedly high resolutions. These maps aren’t built using Facebook data and instead rely on combining the power of machine vision AI with satellite imagery and census information.

  5. Population density in the U.S. 2023, by state

    • statista.com
    • akomarchitects.com
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Sep 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  6. d

    Terrestrial Condition Assessment (TCA) Feral Pig Density (Map Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Terrestrial Condition Assessment (TCA) Feral Pig Density (Map Service) [Dataset]. https://catalog.data.gov/dataset/terrestrial-condition-assessment-tca-feral-pig-density-map-service-42e23
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Forest Service
    Description

    Data are derived from generalized linear models and model selection techniques using 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents. Models were used to determine the strength of association among a diverse set of biotic and abiotic factors associated with wild pig population dynamics. The models and associated factors were used to predict the potential population density of wild pigs at the 1 km resolution. Predictions were then compared with available population estimates for wild pigs on their native range in North America indicating the predicted densities are within observed values. See Lewis et al (2017) and Lewis et al (2019) for more information.Lewis, Jesse S., Matthew L. Farnsworth, Chris L. Burdett, David M. Theobald, Miranda Gray, and Ryan S. Miller. "Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal." Scientific reports7 (2017): 44152.Lewis, Jesse S., Joseph L. Corn, John J. Mayer, Thomas R. Jordan, Matthew L. Farnsworth, Christopher L. Burdett, Kurt C. VerCauteren, Steven J. Sweeney, and Ryan S. Miller. "Historical, current, and potential population size estimates of invasive wild pigs (Sus scrofa) in the United States." Biological Invasions21, no. 7 (2019): 2373-2384.

  7. TIGER/Line Shapefile, Current, Nation, U.S., 2020 Census Urban Area

    • catalog.data.gov
    Updated Aug 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2025). TIGER/Line Shapefile, Current, Nation, U.S., 2020 Census Urban Area [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-nation-u-s-2020-census-urban-area
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,644 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a five-character numeric census code that may contain leading zeros.

  8. Urban and Rural Population Dot Density Patterns in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population Dot Density Patterns in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/6400927e585d473fa7894fda91a6c441
    Explore at:
    Dataset updated
    Jun 8, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map uses dot density patterns to indicate which population is larger in each area: urban (green) or rural (blue). Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas with all green dots, and 100% rural areas in dark blue dots. Areas with mixed urban/rural population have a proportional mix of green and blue dots to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  9. G

    Distribution of Population 1851-1941

    • open.canada.ca
    • datasets.ai
    • +1more
    jpg, pdf
    Updated Mar 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Distribution of Population 1851-1941 [Dataset]. https://open.canada.ca/data/en/dataset/48a638ed-1850-55b9-9b2b-348d7ee1e5df
    Explore at:
    pdf, jpgAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Contained within the 3rd Edition (1957) of the Atlas of Canada is a plate that shows the distribution of population in what is now Canada circa 1851, 1871, 1901, 1921 and 1941. The five maps display the boundaries of the various colonies, provinces and territories for each date. Also shown on these five maps are the locations of principal cities and settlements. These places are shown on all of the maps for reference purposes even though they may not have been in existence in the earlier years. Each map is accompanied by a pie chart providing the percentage distribution of Canadian population by province and territory corresponding to the date the map is based on. It should be noted that the pie chart entitled Percentage Distribution of Total Population, 1851, refers to the whole of what was then British North America. The name Canada in this chart refers to the province of Canada which entered confederation in 1867 as Ontario and Quebec. The other pie charts, however, show only percentage distribution of population in what was Canada at the date indicated. Three additional graphs are included on this plate and show changes in the distribution of the population of Canada from 1867 to 1951, changes in the percentage distribution of the population of Canada by provinces and territories from 1867 to 1951 and elements in the growth of the population of Canada for each ten-year period from 1891 to 1951.

  10. d

    EnviroAtlas - Road Density Metrics by 12-digit HUC for the Conterminous...

    • catalog.data.gov
    • gimi9.com
    Updated Jul 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development - Center for Public Health and Environmental Assessment (CPHEA), EnviroAtlas (Publisher) (2025). EnviroAtlas - Road Density Metrics by 12-digit HUC for the Conterminous United States [Dataset]. https://catalog.data.gov/dataset/enviroatlas-road-density-metrics-by-12-digit-huc-for-the-conterminous-united-states4
    Explore at:
    Dataset updated
    Jul 26, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development - Center for Public Health and Environmental Assessment (CPHEA), EnviroAtlas (Publisher)
    Area covered
    Contiguous United States, United States
    Description

    This EnviroAtlas dataset describes several metrics related to road-stream crossings and roads near streams at the watershed scale. According to EPA report 600/R-97/130, roads can affect stream water in many ways and roads in close proximity to streams have the most potential for adverse effects on stream water quality. Since roads have an impervious surface, and ditches are built to channel water from roads into streams, the rate of water runoff is higher where there are more roads. Not only does this lead to increased scour of the river channel and stream banks, but it can also be a preferential pathway for runoff associated with road salting or routine maintenance which, along with other spills on the roadway, can lead to overall reductions in water quality. This dataset was produced the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Demographics: Population, Race, Gender Data County

    • kaggle.com
    zip
    Updated Jan 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Demographics: Population, Race, Gender Data County [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/county-level-demographic-population-race-gender
    Explore at:
    zip(93210 bytes)Available download formats
    Dataset updated
    Jan 14, 2025
    Authors
    Ahmed Mohamed
    Description

    """

    County-Level Demographic: Population, Race, Gender

    Overview

    This dataset provides a detailed breakdown of demographic information for counties across the United States, derived from the U.S. Census Bureau's 2023 American Community Survey (ACS). The data includes population counts by gender, race, and ethnicity, alongside unique identifiers for each county using State and County FIPS codes.

    Dataset Features

    The dataset includes the following columns: - County: Name of the county. - State: Name of the state the county belongs to. - State FIPS Code: Federal Information Processing Standard (FIPS) code for the state. - County FIPS Code: FIPS code for the county. - FIPS: Combined State and County FIPS codes, a unique identifier for each county. - Total Population: Total population in the county. - Male Population: Number of males in the county. - Female Population: Number of females in the county. - Total Race Responses: Total race-related responses recorded in the survey. - White Alone: Number of individuals identifying as White alone. - Black or African American Alone: Number of individuals identifying as Black or African American alone. - Hispanic or Latino: Number of individuals identifying as Hispanic or Latino.

    Processing Methodology

    1. Source:
    2. County-Level Aggregation:
      • Each county is uniquely identified using State FIPS Code and County FIPS Code.
      • These codes were concatenated to form the unified FIPS column.
    3. Data Cleaning:
      • All numeric columns were converted to appropriate data types.
      • County and state names were extracted from the raw NAME field for clarity.

    Why Use This Dataset?

    This dataset is highly versatile and suitable for: - Demographic Analysis: - Analyze population distribution by gender, race, and ethnicity. - Geographic Studies: - Use FIPS codes to map counties geographically. - Data Visualizations: - Create visual insights into demographic trends across counties.

    File Format

    • The dataset is available as a CSV file with 3,000+ rows (one for each county).

    Licensing

    • Source: Data is sourced from the U.S. Census Bureau's 2023 American Community Survey (ACS).
    • License: This dataset is in the public domain and provided under the U.S. Census Bureau’s terms of use. Attribution to the Census Bureau is appreciated.

    Acknowledgments

    Special thanks to the U.S. Census Bureau for making this data publicly available and to the Kaggle community for fostering a collaborative space for data analysis and exploration. """

  12. Distribution of the global population by continent 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  13. US County Demographics

    • kaggle.com
    zip
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US County Demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-demographics/data
    Explore at:
    zip(7779793 bytes)Available download formats
    Dataset updated
    Jan 24, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US County Demographics

    Social, Health, and Economic Indicators

    By Danny [source]

    About this dataset

    This dataset contains US county-level demographic data from 2016, giving insight into the health and economic conditions of counties in the United States. Aggregated and filtered from various sources such as the US Census Small Area Income and Poverty Estimates (SAIPE) Program, American Community Survey, CDC National Center for Health Statistics, and more, this comprehensive dataset provides information on population as well as desert population for each county. Additionally, data is split between metropolitan and nonmetropolitan areas according to the Office of Management and Budget's 2013 classification scheme. Valuable information pertaining to infant mortality rates and total population are also included in this detailed set of data. Use this dataset to gain a better understanding of one of our nation's most essential regions

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Look at the information within the 'About this Dataset' section to have an understanding of what data sources were used to create this dataset as well as any transformations that may have been done while creating it.
    • Familiarize yourself with the columns provided in the data set to understand what information is available for each county such as total population (totpop), parental education level (educationLvl), median household income (medianIncome), etc.,
    • Use a combination of filtering and sorting techniques to narrow down results and focus in on more specific county demographics that you are looking for such as total households living below poverty line by state or median household income per capita between two counties etc.,
    • Keep in mind any additional transformations/simplifications/aggregations done during step 2 when using your data for analysis. For example, if certain variables were pivoted during step two from being rows into columns because it was easier to work with multiple years of income levels by having them all consolidated into one column then be aware that some states may not appear in all records due to those transformations being applied differently between regions which could result in missing values or other inconsistencies when doing downstream analysis on your selected variables.
    • Utilize resources such as Wikipedia and government census estimates if you need more detailed information surrounding these demographic characteristics beyond what's available within our current dataset – these can be helpful when conducting further research outside of solely relying on our provided spreadsheet values alone!

    Research Ideas

    • Creating a US county-level heat map of infant mortality rates, offering insight into which areas are most at risk for poor health outcomes.
    • Generating predictive models from the population data to anticipate and prepare for future population trends in different states or regions.
    • Developing an interactive web-based tool for school districts to explore potential impacts of student mobility on their area's population stability and diversity

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: Food Desert.csv | Column name | Description | |:--------------------|:----------------------------------------------------------------------------------| | year | The year the data was collected. (Integer) | | fips | The Federal Information Processing Standard (FIPS) code for the county. (Integer) | | state_fips | The FIPS code for the state. (Integer) | | county_fips | The FIPS code for the county. (Integer)...

  14. Population Density by County 2020

    • noaa.hub.arcgis.com
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2024). Population Density by County 2020 [Dataset]. https://noaa.hub.arcgis.com/maps/04c3d53bf58c4ecba1327ff6d2b39b98
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    This layer presents population density data by county for states bordering the U.S. Gulf, sourced from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. Population density is displayed as the number of people per square kilometer. Broadly speaking, population density indicates how many people would inhabit one square kilometer if the population were evenly distributed across the area. However, population distribution is uneven. People tend to cluster in urban areas, while those in rural regions are spread out over a much more sparsely populated landscape. Population density is a crucial metric for understanding and managing human population dynamics and their effects on society and the environment. It helps assess various environmental challenges, including urban sprawl, pollution, habitat loss, and resource depletion. Coastal areas frequently experience high population density due to urbanization, influencing land use, housing, and infrastructure development. This density can also stimulate tourism and recreation, necessitating careful planning for facilities, transportation, and environmental protection. Additionally, coastal regions are more susceptible to natural disasters such as hurricanes and flooding, making population density data essential for developing effective evacuation plans and emergency services. Data: U.S. Census BureauDocumentation: U.S. Census Bureau This is a component of the Gulf Data Atlas (V2.0) for the Socioeconomic Conditions topic area.

  15. Map Layer: Sargassum Density in the Gulf of Mexico

    • datasets.ai
    • ncei.noaa.gov
    • +1more
    0, 21
    Updated Oct 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2023). Map Layer: Sargassum Density in the Gulf of Mexico [Dataset]. https://datasets.ai/datasets/map-layer-sargassum-density-in-the-gulf-of-mexico1
    Explore at:
    0, 21Available download formats
    Dataset updated
    Oct 6, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    National Oceanic and Atmospheric Administration, Department of Commerce
    Area covered
    Gulf of Mexico (Gulf of America)
    Description

    This map layer includes Sargassum density images downloaded from the University of South Florida Optical Oceanography Labratory. The images are downloaded and reprojected to display on the HABSOS web map application.

  16. u

    Data from: White-tailed deer density estimates across the eastern United...

    • agdatacommons.nal.usda.gov
    • datasetcatalog.nlm.nih.gov
    bin
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian F. Walters; Christopher W. Woodall; Matthew B. Russell (2025). White-tailed deer density estimates across the eastern United States, 2008 [Dataset]. http://doi.org/10.13020/D6G014
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    University of Minnesota
    Authors
    Brian F. Walters; Christopher W. Woodall; Matthew B. Russell
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    In 2008, the Quality Deer Management Association (QDMA) developed a map of white-tailed deer density with information obtained from state wildlife agencies. The map contains information from 2001 to 2005, with noticeable changes since the development of the first deer density map made by QDMA in 2001. The University of Minnesota, Forest Ecosystem Health Lab and the US Department of Agriculture, Forest Service-Northern Research Station have digitized the deer density map to provide information on the status and trends of forest health across the eastern United States. The QDMA spatial map depicting deer density (deer per square mile) was digitized across the eastern United States. Estimates of deer density were: White = rare, absent, or urban area with unknown population, Green = less than 15 deer per square mile, Yellow = 15 to 30 deer per square mile, Orange = 30 to 40 deer per square mile, or Red = greater than 45 deer per square mile. These categories represent coarse deer density levels as identified in the QDMA report in 2009 and should not be used to represent current or future deer densities across the study region. Sponsorship: Quality Deer Management Association; US Department of Agriculture, Forest Service-Northern Research Station; Minnesota Agricultural Experiment Station. Resources in this dataset:Resource Title: Link to DRUM catalog record. File Name: Web Page, url: https://conservancy.umn.edu/handle/11299/178246

  17. d

    Domestic well locations and populations served in the conterminous U.S.:1990...

    • search.dataone.org
    • data.usgs.gov
    • +2more
    Updated Aug 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tyler D. Johnson, United States Geological Survey; Kenneth Belitz, United States Geological Survey (2017). Domestic well locations and populations served in the conterminous U.S.:1990 [Dataset]. https://search.dataone.org/view/860da7fd-b683-4fe5-a169-7ce6f8923e05
    Explore at:
    Dataset updated
    Aug 3, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Tyler D. Johnson, United States Geological Survey; Kenneth Belitz, United States Geological Survey
    Time period covered
    Jan 1, 1990 - Dec 31, 1990
    Area covered
    Variables measured
    VALUE
    Description

    In this dataset we present two maps that estimate the location and population served by domestic wells in the contiguous United States. The first methodology, called the “Block Group Method” or BGM, builds upon the original block-group data from the 1990 census (the last time the U.S. Census queried the population regarding their source of water) by incorporating higher resolution census block data. The second methodology, called the “Road-Enhanced Method” or REM, refines the locations by using a buffer expansion and shrinkage technique along roadways to define areas where domestic wells exist. The fundamental assumption with this method is that houses (and therefore domestic wells) are located near a named road. The results are presented as two nationally consistent domestic-well population datasets. While both methods can be considered valid, the REM map is more precise in locating domestic wells; the REM map had a smaller amount of spatial bias (nearly equal vs biased in type 1 error), total error (10.9% vs 23.7%,), and distance error (2.0 km vs 2.7 km), when comparing the REM and BGM maps to a California calibration map. However, the BGM map is more inclusive of all potential locations for domestic wells. The primary difference in the BGM and the REM is the mapping of low density areas. The REM has a 57% reduction in areas mapped as low density (populations greater than 0 but less than 1 person per km), concentrating populations into denser regions. Therefore, if one is trying to capture all of the potential areas of domestic-well usage, then the BGM map may be more applicable. If location is more imperative, then the REM map is better at identifying areas of the landscape with the highest probability of finding a domestic well. Depending on the purpose of a study, a combination of both maps can be used. For space concerns, the datasets have been divided into two separate geodatabases. The BGM map geodatabase and the REM map database.

  18. Tables S1 to S5: A data-driven approach to understanding the relations...

    • geolsoc.figshare.com
    zip
    Updated Sep 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu-Ting Yu; H. Sebnem Duzgun; Andrew Sabin (2025). Tables S1 to S5: A data-driven approach to understanding the relations between geothermal exploration parameters: insights from Coso, Brady and Desert Peak, USA [Dataset]. http://doi.org/10.6084/m9.figshare.30084019.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 9, 2025
    Dataset provided by
    Geological Society of Londonhttp://www.geolsoc.org.uk/
    Authors
    Yu-Ting Yu; H. Sebnem Duzgun; Andrew Sabin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Table S1. The K–S test result. The null hypothesis was rejected in most cases, showing that the distributions of datasets are primarily different. Table S2. The p-values of the coefficients and intercepts from the linear regression models of Fault Density Maps fit by Mineral Density Maps. Table S3. The p-values of the coefficients and intercepts from the linear regression models of Multiclass Temperature Maps fit by Fault Density Map and Mineral Density Maps. Table S4. The AIC values from the regression models of Fault Density Maps fit by Mineral Density Maps. Table S5. The AIC values from the regression models of Multiclass Temperature Maps fit by Fault Density Map and Mineral Density Maps.

  19. Population Density (EPI - 2018)

    • datacore-gn.unepgrid.ch
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment-GRID Geneva, Population Density (EPI - 2018) [Dataset]. https://datacore-gn.unepgrid.ch/geonetwork/srv/api/records/05bfc682-4e1c-4aef-93a2-1704946e6844
    Explore at:
    ogc:wms-1.3.0-http-get-mapAvailable download formats
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Area covered
    Description

    Source: Map created by EPI (Elephant Protection Initiative) with data from CIESIN, Columbia University, USA. The map is published on UNEP's South Sudan: First State of Environment and Outlook Report 2018, using data from WCS. The UNEP's report could be found here

    The map shows the population distribution in South Sudan. Jonglei is the most populous area, with 16 per cent of the total population, and Western Bahr el Ghazal is the least populous area with only 4 per cent of the total. The highest population densities are along the Nile River and their tributaries.

  20. Comprehensive COVID-19 State Data

    • kaggle.com
    zip
    Updated Sep 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cameron Gould (2021). Comprehensive COVID-19 State Data [Dataset]. https://www.kaggle.com/datasets/camerongould/comprehensive-covid19-state-data/discussion
    Explore at:
    zip(6660 bytes)Available download formats
    Dataset updated
    Sep 24, 2021
    Authors
    Cameron Gould
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    After observing many naive conversations about COVID-19, claiming that the pandemic can be blamed on just a few factors, I decided to create a data set, to map a number of different data points to every U.S. state (including D.C. and Puerto Rico).

    Content

    This data set contains basic COVID-19 information about each state, such as total population, total COVID-19 cases, cases per capita, COVID-19 deaths and death rate, Mask mandate start, and end dates, mask mandate duration (in days), and vaccination rates.

    However, when evaluating a pandemic (specifically a respiratory virus) it would be wise to also explore the population density of each state, which is also included. For those interested, I also included political party affiliation for each state ("D" for Democrat, "R" for Republican, and "I" for Puerto Rico). Vaccination rates are split into 1-dose and 2-dose rates.

    Also included is data ranking the Well-Being Index and Social Determinantes of Health Index for each state (2019). There are also several other columns that "rank" states, such as ranking total cases per state (ascending), total cases per capita per state (ascending), population density rank (ascending), and 2-dose vaccine rate rank (ascending). There are also columns that compare deviation between columns: case count rank vs population density rank (negative numbers indicate that a state has more COVID-19 cases, despite being lower in population density, while positive numbers indicate the opposite), as well as per-capita case count vs density.

    Acknowledgements

    Several Statista Sources: * COVID-19 Cases in the US * Population Density of US States * COVID-19 Cases in the US per-capita * COVID-19 Vaccination Rates by State

    Other sources I'd like to acknowledge: * Ballotpedia * DC Policy Center * Sharecare Well-Being Index * USA Facts * World Population Overview

    Inspiration

    I would like to see if any new insights could be made about this pandemic, where states failed, or if these case numbers are 100% expected for each state.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ArcGIS Living Atlas Team (2020). Race in the US by Dot Density [Dataset]. https://coronavirus-resources.esri.com/maps/71df79b33d4e4db28c915a9f16c3074e

Race in the US by Dot Density

Explore at:
Dataset updated
Jan 10, 2020
Dataset authored and provided by
ArcGIS Living Atlas Team
Area covered
Description

This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?

Search
Clear search
Close search
Google apps
Main menu