https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for counties and equivalent entities in United States of America. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.
The Counties dataset was updated on October 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529015
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 3065 counties in the United States by Multi-Racial Black or African American population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This layer presents the U.S. Census County (or County Equivalent) boundaries of the United States in the 50 states and the District of Columbia, sourced from 2023 Census TIGER/Line data and includes the estimated annual population total of each County.This layer is updated annually. The geography is sourced from U.S. Census Bureau 2023 TIGER FGDB (National Sub-State) and edited using TIGER Hydrography to add a detailed coastline for cartographic purposes. Attribute fields include 2023 estimated total population from the Esri demographics team.This ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 3065 counties in the United States by Hispanic Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 3065 counties in the United States by American Indian and Alaska Native (AIAN) population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100 consists of county-level population projection scenarios of total population, and by age, sex, and race in five-year intervals for all U.S. counties for the period 2020 - 2100. These data have numerous potential uses and can serve as inputs for addressing questions involving sub-national demographic change in the United States in the near, middle- and long-term.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains the covid-19 pandemic data of the years 2020, 2021 and 2022 of the United States. It has the following information; 1. The FIPS code 2. The State 3. City or Town 4. Date 5. Total Death 6. Total Confirmed Cases 7. The location (longitude and latitude)
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Black or African American Alone (5-year estimate) in Montgomery County, MD (B03002004E024031) from 2009 to 2023 about Montgomery County, MD; African-American; non-hispanic; Washington; MD; estimate; persons; 5-year; population; and USA.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
Announcement Beginning October 20, 2022, CDC will report and publish aggregate case and death data from jurisdictional and state partners on a weekly basis rather than daily. As a result, community transmission levels data reported on data.cdc.gov will be updated weekly on Thursdays, typically by 8 PM ET, instead of daily. This public use dataset has 7 data elements reflecting community transmission levels for all available counties. This dataset contains reported daily transmission level at the county level and contains the same values used to display transmission maps on the COVID Data Tracker. Each day, the dataset is appended to contain the most recent day's data. Transmission level is set to low, moderate, substantial, or high using the calculation rules below. Currently, CDC provides the public with two versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Originally Posted dataset), updated daily with the most recent day’s data, and an historical dataset with the county-level transmission data from January 1, 2021 (Historical Changes dataset). Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making. CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00). Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00). If the two metrics suggest different transmission levels, the higher level is selected. Transmission categories include: Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%; Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%; Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%; High Transmission Threshold: Counties with 100 or more total cases per 100,000
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total (5-year estimate) in Elkhart County, IN (B03002001E018039) from 2009 to 2023 about Elkhart County, IN; Elkhart; IN; estimate; 5-year; persons; population; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 67 counties in the Florida by Hispanic Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each counties over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains estimates of proportional area of 18 major crops for each county in the United States at roughly decadal time steps between 1840 and 2017, and was used for analyses of historical changes in crop area, diversity, and distribution published in:Crossley, MS, KD Burke, SD Schoville, VC Radeloff. (2020). Recent collapse of crop belts and declining diversity of US agriculture since 1840. Global Change Biology (in press).The original data used to curate this dataset was derived by Haines et al. (ICPSR 35206) from USDA Agricultural Census archives (https://www.nass.usda.gov/AgCensus/). This dataset builds upon previous work in that crop values are georeferenced and rectified to match 2012 county boundaries, and several inconsistencies in the tabular-formatted data have been smoothed-over. In particular, smoothing included conversion of values of production (e.g. bushels, lbs, typical of 1840-1880 censuses) into values of area (using USDA NASS yield data), imputation of missing values for certain crop x county x year combinations, and correcting values for counties whose crop totals exceeded the possible land area.Please contact the PI, Mike Crossley, with any questions or requests: mcrossley3@gmail.com
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total (5-year estimate) in St. Johns County, FL (B03002001E012109) from 2009 to 2023 about St. Johns County, FL; Jacksonville; estimate; FL; 5-year; persons; population; and USA.
The poly shapefile has data for total number of business tax returns (electronic and paper filing) by type of businesses for the lower 48 state counties for the year 2006. The types of businesses include corporations, s-corporations, partnerships, estates and trusts. The data also has count of approved and active tax preparation entities that transmit returns electronically. They are referred to as ERO (Electronic Return Originators). Note: -99 refers to number of business tax returns less than 10.
This dataset contains deidentified data from the National Malaria Surveillance System on the number of malaria cases reported in the United States in 2016, by county. Only counties reporting five or more cases are included in this dataset.
Note: The cumulative case count for some counties (with small population) is higher than expected due to the inclusion of non-permanent residents in COVID-19 case counts.
Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues. CDC also worked with jurisdictions after the end of the public health emergency declaration to finalize county data.
Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the daily archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implement these case classifications. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, counts of confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report
This data collection contains voter registration and turnout surveys. The files contain summaries at state, town, and county levels. Each level of data include: total population, total voting-age population, total voter registration (excluding ND, WI), total ballots cast, total votes cast for president, and voter registration by party. Note: see the documentation for information on missing data.
Dave Leip's website
The Dave Leip website here: https://uselectionatlas.org/BOTTOM/store_data.php lists the available data. Files are occasionally updated by Dave Leip, and new versions are made available, but CCSS is not notified. If you suspect the file you want may be updated, please get in touch with CCSS. These files were last updated on 9 JUL 2024.
Note that file version numbers are those assigned to them by Dave Leip's Election Atlas. Please refer to the Data and Reproduction Archive Version number in your citations for the full dataset.
For additional information on file layout, etc. see https://uselectionatlas.org/BOTTOM/DOWNLOAD/spread_turnout.html.
Similar data may be available at https://www.electproject.org/election-data/voter-turnout-data dating back to 1787.
OverviewThe multiple hazard index for the United States Counties was designed to map natural hazard relating to exposure to multiple natural disasters. The index was created to provide communities and public health officials with an overview of the risks that are prominent in their county, and to facilitate the comparison of hazard level between counties. Most existing hazard maps focus on a single disaster type. By creating a measure that aggregates the hazard from individual disasters, the increased hazard that results from exposure to multiple natural disasters can be better understood. The multiple hazard index represents the aggregate of hazard from eleven individual disasters. Layers displaying the hazard from each individual disaster are also included.
The hazard index is displayed visually as a choropleth map, with the color blue representing areas with less hazard and red representing areas with higher hazard. Users can click on each county to view its hazard index value, and the level of hazard for each individual disaster. Layers describing the relative level of hazard from each individual disaster are also available as choropleth maps with red areas representing high, orange representing medium, and yellow representing low levels of hazard.Methodology and Data CitationsMultiple Hazard Index
The multiple hazard index was created by coding the individual hazard classifications and summing the coded values for each United States County. Each individual hazard is weighted equally in the multiple hazard index. Alaska and Hawaii were excluded from analysis because one third of individual hazard datasets only describe the coterminous United States.
Avalanche Hazard
University of South Carolina Hazards and Vulnerability Research Institute. “Spatial Hazard Events and Losses Database”. United States Counties. “Avalanches United States 2001-2009”. < http://hvri.geog.sc.edu/SHELDUS/
Downloaded 06/2016.
Classification
Avalanche hazard was classified by dividing counties based upon the number of avalanches they experienced over the nine year period in the dataset. Avalanche hazard was not normalized by total county area because it caused an over-emphasis on small counties, and because avalanches are a highly local hazard.
None = 0 AvalanchesLow = 1 AvalancheMedium = 2-5 AvalanchesHigh = 6-10 Avalanches
Earthquake Hazard
United States Geological Survey. “Earthquake Hazard Maps”. 1:2,000,000. “Peak Ground Acceleration 2% in 50 Years”. < http://earthquake.usgs.gov/hazards/products/conterminous/
. Downloaded 07/2016.
Classification
Peak ground acceleration (% gravity) with a 2% likelihood in 50 years was averaged by United States County, and the earthquake hazard of counties was classified based upon this average.
Low = 0 - 14.25 % gravity peak ground accelerationMedium = 14.26 - 47.5 % gravity peak ground accelerationHigh = 47.5+ % gravity peak ground acceleration
Flood Hazard
United States Federal Emergency Management Administration. “National Flood Hazard Layer”. 1:10,000. “0.2 Percent Annual Flood Area”. < https://data.femadata.com/FIMA/Risk_MAP/NFHL/
. Downloaded 07/2016.
Classification
The National Flood Hazard Layer 0.2 Percent Annual Flood Area was spatially intersected with the United States Counties layer, splitting flood areas by county and adding county information to flood areas. Flood area was aggregated by county, expressed as a fraction of the total county land area, and flood hazard was classified based upon percentage of land that is susceptible to flooding. National Flood Hazard Layer does not cover the entire United States; coverage is focused on populated areas. Areas not included in National Flood Hazard Layer were assigned flood risk of Low in order to include these areas in further analysis.
Low = 0-.001% area susceptibleMedium = .00101 % - .005 % area susceptibleHigh = .00501+ % area susceptible
Heat Wave Hazard
United States Center for Disease Control and Prevention. “National Climate Assessment”. Contiguous United States Counties. “Extreme Heat Events: Heat Wave Days in May - September for years 1981-2010”. Downloaded 06/2016.
Classification
Heat wave was classified by dividing counties based upon the number of heat wave days they experienced over the 30 year time period described in the dataset.
Low = 126 - 171 Heat wave DaysMedium = 172 – 187 Heat wave DaysHigh = 188 – 255 Heat wave Days
Hurricane Hazard
National Oceanic and Atmospheric Administration. Coastal Services Center. “Historical North Atlantic Tropical Cyclone Tracks, 1851-2004”. 1: 2,000,000. < https://catalog.data.gov/dataset/historical-north-atlantic-tropical-cyclone-tracks-1851-2004-direct-download
. Downloaded 06/2016.
National Oceanic and Atmospheric Administration. Coastal Services Center. “Historical North Pacific Tropical Cyclone Tracks, 1851-2004”. 1: 2,000,000. < https://catalog.data.gov/dataset/historical-north-atlantic-tropical-cyclone-tracks-1851-2004-direct-download
. Downloaded 06/2016.
Classification
Atlantic and Pacific datasets were merged. Tropical storm and disturbance tracks were filtered out leaving hurricane tracks. Each hurricane track was assigned the value of the category number that describes that event. Weighting each event by intensity ensures that areas with higher intensity events are characterized as being more hazardous. Values describing each hurricane event were aggregated by United States County, normalized by total county area, and the hurricane hazard of counties was classified based upon the normalized value.
Landslide Hazard
United States Geological Survey. “Landslide Overview Map of the United States”. 1:4,000,000. “Landslide Incidence and Susceptibility in the Conterminous United States”. < https://catalog.data.gov/dataset/landslide-incidence-and-susceptibility-in-the-conterminous-united-states-direct-download
. Downloaded 07/2016.
Classification
The classifications of High, Moderate, and Low landslide susceptibility and incidence from the study were numerically coded, the average value was computed for each county, and the landslide hazard was classified based upon the average value.
Long-Term Drought Hazard
United States Drought Monitor, Drought Mitigation Center, United States Department of Agriculture, National Oceanic and Atmospheric Administration. “Drought Monitor Summary Map”. “Long-Term Drought Impact”. < http://droughtmonitor.unl.edu/MapsAndData/GISData.aspx >. Downloaded 06/2016.
Classification
Short-term drought areas were filtered from the data; leaving only long-term drought areas. United States Counties were assigned the average U.S. Drought Monitor Classification Scheme Drought Severity Classification value that characterizes the county area. County long-term drought hazard was classified based upon average Drought Severity Classification value.
Low = 1 – 1.75 average Drought Severity Classification valueMedium = 1.76 -3.0 average Drought Severity Classification valueHigh = 3.0+ average Drought Severity Classification value
Snowfall Hazard
United States National Oceanic and Atmospheric Administration. “1981-2010 U.S. Climate Normals”. 1: 2,000,000. “Annual Snow Normal”. < http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/products/precipitation/
. Downloaded 08/2016.
Classification
Average yearly snowfall was joined with point location of weather measurement stations, and stations without valid snowfall measurements were filtered out (leaving 6233 stations). Snowfall was interpolated using least squared distance interpolation to create a .05 degree raster describing an estimate of yearly snowfall for the United States. The average yearly snowfall raster was aggregated by county to yield the average yearly snowfall per United States County. The snowfall risk of counties was classified by average snowfall.
None = 0 inchesLow = .01- 10 inchesMedium = 10.01- 50 inchesHigh = 50.01+ inches
Tornado Hazard
United States National Oceanic and Atmospheric Administration Storm Prediction Center. “Severe Thunderstorm Database and Storm Data Publication”. 1: 2,000,000. “United States Tornado Touchdown Points 1950-2004”. < https://catalog.data.gov/dataset/united-states-tornado-touchdown-points-1950-2004-direct-download
. Downloaded 07/2016.
Classification
Each tornado touchdown point was assigned the value of the Fujita Scale that describes that event. Weighting each event by intensity ensures that areas with higher intensity events are characterized as more hazardous. Values describing each tornado event were aggregated by United States County, normalized by total county area, and the tornado hazard of counties was classified based upon the normalized value.
Volcano Hazard
Smithsonian Institution National Volcanism Program. “Volcanoes of the World”. “Holocene Volcanoes”. < http://volcano.si.edu/search_volcano.cfm
. Downloaded 07/2016.
Classification
Volcano coordinate locations from spreadsheet were mapped and aggregated by United States County. Volcano count was normalized by county area, and the volcano hazard of counties was classified based upon the number of volcanoes present per unit area.
None = 0 volcanoes/100 kilometersLow = 0.000915 - 0.007611 volcanoes / 100 kilometersMedium = 0.007612 - 0.018376 volcanoes / 100 kilometersHigh = 0.018377- 0.150538 volcanoes / 100 kilometers
Wildfire Hazard
United States Department of Agriculture, Forest Service, Fire, Fuel, and Smoke Science Program. “Classified 2014 Wildfire Hazard Potential”. 270 meters. < http://www.firelab.org/document/classified-2014-whp-gis-data-and-maps
. Downloaded 06/2016.
Classification
The classifications of Very High, High, Moderate, Low, Very Low, and Non-Burnable/Water wildfire hazard from the study were numerically coded, the average value was computed for each county, and the wildfire hazard was classified based upon the average value.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for counties and equivalent entities in United States of America. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.