100+ datasets found
  1. Motor Vehicle Use Map: Roads (Feature Layer)

    • catalog.data.gov
    • datasets.ai
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Motor Vehicle Use Map: Roads (Feature Layer) [Dataset]. https://catalog.data.gov/dataset/motor-vehicle-use-map-roads-feature-layer-7d219
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The feature class indicates the specific types of motorized vehicles allowed on the designated routes and their seasons of use. The feature class is designed to be consistent with the MVUM (Motor Vehicle Use Map). It is compiled from the GIS Data Dictionary data and NRM Infra tabular data that the administrative units have prepared for the creation of their MVUMs. Only roads with a SYMBOL attribute value of 1, 2, 3, 4, 11, and 12 are Forest Service System roads and contain data concerning their availability for OHV (Off Highway Vehicle) use. This data is published and refreshed on a unit by unit basis as needed. Data for each individual unit must be verified and proved consistent with the published MVUMs prior to publication.The Forest Service's Natural Resource Manager (NRM) Infrastructure (Infra) is the agency standard for managing and reporting information about inventory of constructed features and land units as well as the permits sold to the general public and to partners. Metadata

  2. Motor Vehicle Use Map: Trails (Feature Layer)

    • agdatacommons.nal.usda.gov
    • gimi9.com
    • +5more
    bin
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Motor Vehicle Use Map: Trails (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Motor_Vehicle_Use_Map_Trails_Feature_Layer_/25973773
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The feature class indicates the specific types of motorized vehicles allowed on the designated routes and their seasons of use. The feature class is designed to be consistent with the MVUM (Motor Vehicle Use Map). It is compiled from the GIS Data Dictionary data and Infra tabular data that the administrative units have prepared for the creation of their MVUMs. Only trails with the symbol value of 5-12, 16, 17 are Forest Service System trails and contain data concerning their availability for motorized use. This data is published and refreshed on a unit by unit basis as needed. Individual unit's data must be verified and proved consistent with the published MVUMs prior to publication in the EDW. Click this link for full metadata description: Metadata _This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.

  3. c

    Global Digital Map Market Report 2025 Edition, Market Size, Share, CAGR,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global Digital Map Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/digital-map-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Digital Maps market size was USD XX million in 2023 and will expand at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.

    The global Digital Maps market will expand significantly by XX% CAGR between 2024 to 2031.
    
    
    North America held the major market of more than XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    Europe accounted for a share of over XX% of the global market size of USD XX million.
    
    
    Asia Pacific held a market of around XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    Latin America's market will have more than XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    Middle East and Africa held the major market of around XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    The Tracking and Telematics segment is set to rise GPS tracking enables fleet managers to monitor their cars around the clock, avoiding expensive problems like speeding and other careless driving behaviors like abrupt acceleration. 
    
    
    The digital maps market is driven by mobile computing devices that are increasingly used for navigation, and the increased usage of geographic data.
    
    
    The retail and real estate segment held the highest Digital Maps market revenue share in 2023.
    

    Market Dynamics of Digital Maps:

    Key drivers of the Digital Maps Market

    Mobile Computing Devices Are Increasingly Used for Navigation leading to market expansion-
    

    Since technology is changing rapidly, two categories of mobile computing devices—tablets and smartphones—are developing and becoming more diverse. One of the newest features accessible in this category is map software, which is now frequently preinstalled on smartphones. Meitrack Group launched the MD500S, a four-channel AI mobile DVR, for the first time in 2022. The MD500S is a 4-channel MDVR with excellent stability that supports DMS, GNSS tracking, video recording, and ADAS. Source- https://www.meitrack.com/ai-mobile-dvr/#:~:text=Mini%204CH%20AI%20Mobile%20DVR,surveillance%20solutions%20that%20uses%20H.

    It's no secret that people who own smartphones routinely use built-in mapping apps to find directions and other driving assistance. Furthermore, these individuals use georeferenced data from GPS and GIS apps to find nearby establishments such as cafes, movie theatres, and other sites of interest. Mobile computing devices are now commonly used to acquire accurate 3D spatial information. A personal digital assistant (PDA) is a software agent that uses information from the user's computer, location, and various web sources to accomplish tasks or offer services. Thus, mobile computing devices are increasingly used for navigation leading to market expansion.

    The usage of geographic data has increased leading to market expansion-
    

    Since it is used in so many different industries and businesses—including risk and emergency management, infrastructure management, marketing, urban planning, resource management (oil, gas, mining, and other resources), business planning, logistics, and more—geospatial information has seen a boom in recent years. Since location is one of the essential components of context, geo-information also serves as a basis for applications in the future. For example, Atos SE provides services to companies in supply chain management, data centers, infrastructure development, urban planning, risk and emergency management, navigation, and healthcare by utilizing geographic information system (GIS) platforms with location-based services (LBS).

    Furthermore, augmented reality-based technologies make use of 3D platforms and GIS data to offer virtual information about people and their environment. Businesses can offer users customized ads by using this information to better understand their needs.Thus, the usage of geographic data has increased leading to market expansion.

    Restraints of the Digital Maps Market

    Lack of knowledgeable and skilled technicia...
    
  4. Motor Vehicle Use Map: Roads and Trails (With Labels)

    • hub.arcgis.com
    • mapping-trout.opendata.arcgis.com
    • +1more
    Updated Feb 28, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2015). Motor Vehicle Use Map: Roads and Trails (With Labels) [Dataset]. https://hub.arcgis.com/maps/f3ddf325eb02467da65b08d73280ae4a
    Explore at:
    Dataset updated
    Feb 28, 2015
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    A map service depicting Forest Service roads and trails that are designated for motor vehicle use under the official U.S. Government Code of Federal Regulations for identifying designated roads and trails (36 CFR 212.56). Road and Trail MVUM. The difference between MVUM_01 and MVUM_02 is that MVUM_02 has trails and roads in the MVUM Symbology group labeled while MVUM_01 does not. Additional roads, such as highways, county roads or public roads, are included for mapping purposes. This map service shows the specific types of motorized vehicles allowed on the designated routes and their seasons of use. Data used in this map service are designed to be consistent with the MVUM (Motor Vehicle Use Map). The road and trail data are compiled from the GIS Data Dictionary data and Infra tabular data that the U.S. Forest Service administrative units have prepared for the creation of their MVUMs. This data is published and refreshed on a unit by unit basis as needed and approved by the individual units in order to stay in sync and consistent with the published MVUMs. Only roads with the symbol value of 1,2,3, 4, 11, 12 are Forest Service System roads and contain data concerning their availability for OHV use. Only trails with the symbol value of 5-12, 16, 1. are Forest Service System trails and contain data concerning their availability for motorized use.�Metadata and Downloads

  5. a

    2045 Land Use Map Overlays

    • data-wake.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Aug 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Apex, North Carolina (2021). 2045 Land Use Map Overlays [Dataset]. https://data-wake.opendata.arcgis.com/maps/bac28d052d4d499496e5cc1799ef4d32
    Explore at:
    Dataset updated
    Aug 18, 2021
    Dataset authored and provided by
    Town of Apex, North Carolina
    Area covered
    Description

    The 2045 Land Use Map is based on the recommendations of Advance Apex: The 2045 Land Use Plan Map Update. Amendments approved after initial Plan adoption are incorporated. Activity center nodes are also identified. Mixed Use polygons designate areas where ≥30% of the land use is required to be nonresidential development. Apartment Only polygons designate areas with High Density Residential striping where only apartments are allowed as a future residential land use.

  6. Statewide Crop Mapping

    • data.cnra.ca.gov
    • data.ca.gov
    • +3more
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Statewide Crop Mapping [Dataset]. https://data.cnra.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    rest service, zip(140021333), shp(126828193), zip(159870566), gdb(86886429), shp(126548912), shp(107610538), gdb(86655350), gdb(85891531), zip(144060723), data, html, zip(169400976), zip(189880202), zip(98690638), zip(179113742), zip(94630663), zip(88308707), gdb(76631083)Available download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  7. d

    Google Address Data, Google Address API, Google location API, Google Map...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY, Google Address Data, Google Address API, Google location API, Google Map API, Business Location Data- 100 M Google Address Data Available [Dataset]. https://datarade.ai/data-products/google-address-data-google-address-api-google-location-api-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Andorra, Luxembourg, Moldova (Republic of), United Kingdom, Estonia, Spain, Åland Islands, China, Liechtenstein, Monaco
    Description

    Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.

    Key Features:

    Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.

    Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.

    Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.

    Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.

    Use Cases:

    Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.

    Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.

    E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.

    Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.

    Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.

    Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.

    Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.

    Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.

    Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.

    Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!

  8. f

    Data from: HistMapR: Rapid digitization of historical land-use maps in R

    • su.figshare.com
    • marketplace.sshopencloud.eu
    • +1more
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alistair G Auffret; Adam Kimberley; Jan Plue; Helle Skånes; Simon Jakobsson; Emelie Waldén; Marika Wennbom; Heather Wood; James M Bullock; Sara A O Cousins; Mira Gartz; Danny A P Hooftman; Louise Tränk (2023). Data from: HistMapR: Rapid digitization of historical land-use maps in R [Dataset]. http://doi.org/10.17045/sthlmuni.4649854.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Stockholm University
    Authors
    Alistair G Auffret; Adam Kimberley; Jan Plue; Helle Skånes; Simon Jakobsson; Emelie Waldén; Marika Wennbom; Heather Wood; James M Bullock; Sara A O Cousins; Mira Gartz; Danny A P Hooftman; Louise Tränk
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    MethodThis dataset includes a detailed example for using our method (described in paper linked to below) to digitize historical land-use maps in R.MapsWe also release all of the Swedish land-use maps that we digitized for this project. This includes the Economic Map of Sweden (Ekonomiska kartan) over Sweden's 15 southernmost counties (7069 25 km2 sheets), plus 11 sheets of the District Economic Map (Häradsekonomiska kartan - but see http://bolin.su.se/data/Cousins-2015 for more accurate manual digitization).SvenskaHär kan du ladda ner 7069 Ekonomiska kartblad som vi digitaliserade över södra Sverige. En kort beskrivning av metoden publicerades i tidningen Kart & Bildteknik (se länk nedan).--UpdatesVersion 2: The digitized Economic Maps have been resampled so that they are all at a 1m resolution. In the original version they were all very close to 1m but not exactly the same, which made mosaicking difficult. This should be easier now. We now also link to the published paper in Methods in Ecology and Evolution.For more information, please see the readme file. For help or collaboration, please contact alistair.auffret@natgeo.su.se. If you use the data here in your work or research, please cite the publication appropriately.

  9. Mapping for Environmental Justice's map for the state of Colorado

    • redivis.com
    application/jsonl +7
    Updated Jun 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mapping for Environmental Justice's map for the state of Colorado [Dataset]. https://redivis.com/datasets/e7qz-a6b024b0q
    Explore at:
    stata, csv, application/jsonl, avro, parquet, sas, arrow, spssAvailable download formats
    Dataset updated
    Jun 21, 2022
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    Colorado
    Description

    Abstract

    MEJ aims to create easy-to-use, publicly-available maps that paint a holistic picture of intersecting environmental, social, and health impacts experienced by communities across the US.

    With guidance from the residents of impacted communities, MEJ combines environmental, public health, and demographic data into an indicator of vulnerability for communities in every state. MEJ’s goal is to fill an existing data gap for individual states without environmental justice mapping tools, and to provide a valuable tool for advocates, scholars, students, lawyers, and policy makers.

    Methodology

    The negative effects of pollution depend on a combination of vulnerability and exposure. People living in poverty, for example, are more likely to develop asthma or die due to air pollution. The method MEJ uses, following the method developed for CalEnviroScreen, reflects this in the two overall components of a census tract’s final “Cumulative EJ Impact”: population characteristics and pollution burden. The CalEnviroScreen methodology was developed through an intensive, multi-year effort to develop a science-backed, peer-reviewed tool to assess environmental justice in a holistic way, and has since been replicated by several other states.

    CalEnviroScreen Methodology:

    • Population characteristics are a combination of socioeconomic data (often referred to as the social determinants of health) and health data that together reflect a populations' vulnerability to pollutants. Pollution burden is a combination of direct exposure to a pollutant and environmental effects, which are adverse environmental conditions caused by pollutants, such as toxic waste sites or wastewater releases. Together, population characteristics and pollution burden help describe the disproportionate impact that environmental pollution has on different communities.

    • Every indicator is ranked as a percentile from 0 to 100 and averaged with the others of the same component to form an overall score for that component. Each component score is then percentile ranked to create a component percentile. The Sensitive Populations component score, for example, is the average of a census tract’s Asthma, Low Birthweight Infants, and Heart Disease indicator percentiles, and the Sensitive Populations component percentile is the percentile rank of the Sensitive Populations score.

    • The Population Characteristics score is the average of the Sensitive Populations component score and the Socioeconomic Factors component score. The Population Characteristics percentile is the percentile rank of the Population Characteristics score.

    • The Pollution Burden score is the average of the Pollution Exposure component score and one half of the Environmental Effects component score (Environmental Effects may have a smaller effect on health outcomes than the indicators included the Exposures component so are weighted half as much as Exposures). The Pollution Burden percentile is the percentile rank of the Pollution Burden score.

    • The Populaton Characteristics and Pollution Burden scores are then multiplied to find the final Cumulative EJ Impact score for a census tract, and then this final score is percentile-ranked to find a census tract's final Cumulative EJ Impact percentile.

    • Census tracts with no population aren't given a Population Characteristics score.

    • Census tracts with an indicator score of zero are assigned a percentile rank of zero. Percentile rank is then only calculated for those census tracts with a score above zero.

    • Census tracts that are missing data for more than two indicators don't receive a final Cumulative EJ Impact ranking.

    %3C!-- --%3E

  10. d

    Land Use Inventory Map

    • datasets.ai
    • datahub.austintexas.gov
    • +3more
    33
    Updated Sep 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin (2024). Land Use Inventory Map [Dataset]. https://datasets.ai/datasets/land-use-inventory-map
    Explore at:
    33Available download formats
    Dataset updated
    Sep 14, 2024
    Dataset authored and provided by
    City of Austin
    Description

    Map showing land uses in the City of Austin jurisdictions. Upated during October of even years.

  11. a

    Data from: General Plan Land Use Map

    • data-placentia.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Placentia (2024). General Plan Land Use Map [Dataset]. https://data-placentia.opendata.arcgis.com/documents/a4cad6e4dca24d2eabe544859560638a
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset authored and provided by
    City of Placentia
    Description

    General Plan Land Use_Updated in November, 2024

  12. O

    Land Use Mapping - Current - Web Service

    • data.qld.gov.au
    xml
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment, Tourism, Science and Innovation (2023). Land Use Mapping - Current - Web Service [Dataset]. https://www.data.qld.gov.au/dataset/land-use-mapping-current-web-service-json
    Explore at:
    xml(1 KiB)Available download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Environment, Tourism, Science and Innovation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This service displays a complete state-wide digital land use map of Queensland. It is based on the Queensland Land Use Mapping Program (QLUMP) data product produced by the Queensland Government. The service presents the most recent mapping of land use features for Queensland. The service is cached to the standard Google / Bing Maps scale levels from 1:591,657,551 to 1:9,028.

  13. a

    NYC LU

    • hub.arcgis.com
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJTPA Hub Community (2024). NYC LU [Dataset]. https://hub.arcgis.com/datasets/njtpa2::land-use-map-map-forum-wfl1?layer=10
    Explore at:
    Dataset updated
    Jul 2, 2024
    Dataset authored and provided by
    NJTPA Hub Community
    Area covered
    Description

    This dataset represents a compilation of data from various government agencies throughout the City of New York. The underlying geography is derived from the Tax Lot Polygon feature class that is part of the Department of Finance's Digital Tax Map (DTM). The tax lots have been clipped to the shoreline, as defined by NYCMap planimetric features. The attribute information is from the Department of City Planning's PLUTO data. The attribute data pertains to tax lot and building characteristics and geographic, political and administrative information for each tax lot in New York City.The Tax Lot Polygon feature class and PLUTO are derived from different sources. As a result, some PLUTO records do not have a corresponding tax lot in the Tax Lot polygon feature class at the time of release. These records are included in a separate non-geographic PLUTO Only table. There are a number of reasons why there can be a tax lot in PLUTO that does not match the DTM; the most common reason is that the various source files are maintained by different departments and divisions with varying update cycles and criteria for adding and removing records. The attribute definitions for the PLUTO Only table are the same as those for MapPLUTO. DCP Mapping Lots includes some features that are not on the tax maps. They have been added by DCP for cartographic purposes. They include street center 'malls', traffic islands and some built streets through parks. These features have very few associated attributes.To report problems, please open a GitHub issue or email DCPOpendata@planning.nyc.gov.DATES OF INPUT DATASETS:Department of City Planning - E-Designations: 2/5/2021Department of City Planning - Zoning Map Index: 7/31/2019Department of City Planning - NYC City Owned and Leased Properties: 11/15/2020Department of City Planning - NYC GIS Zoning Features: 2/5/2021Department of City Planning - Polictical and Administrative Districts: 11/17/2020Department of City Planning - Geosupport version 20D: 11/17/2020Department of Finance - Digital Tax Map: 1/30/2021Department of Finance - Mass Appraisal System (CAMA): 2/10/2021Department of Finance - Property Tax System (PTS): 2/6/2021Landmarks Preservation Commission - Historic Districts: 2/4/2021Landmarks Preservation Commission - Individual Landmarks: 2/4/2021Department of Information Telecommunications & Technology - Building Footprints: 2/10/2021Department of Parks and Recreation - GreenThumb Garden Info: 1/4/2021

  14. Bioregional_Assessment_Programme_Land use mapping - Queensland current

    • researchdata.edu.au
    • cloud.csiss.gmu.edu
    • +1more
    Updated Mar 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2016). Bioregional_Assessment_Programme_Land use mapping - Queensland current [Dataset]. https://researchdata.edu.au/bioregionalassessmentprogrammeland-use-mapping-queensland-current/2980258
    Explore at:
    Dataset updated
    Mar 29, 2016
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    This dataset is a complete state-wide digital land use map of Queensland. The dataset is a product of the Queensland Land Use Mapping Program (QLUMP) and was produced by the Queensland Government. It presents the most current mapping of land use features for Queensland, including the land use mapping products from 1999, 2006 and 2009, in a single feature layer. This dataset was last updated July 2012. See additional information also.

    Purpose

    Indicates the current primary use or management objective of the land.

    Dataset History

    Source DataQueensland Government - Land use mapping (1999); Landsat TM and ETM imagery; Spot5 imagery; High resolution ortho photography through the Spatial Imagery Subscription Plan (SISP); Queensland Digital Cadastral Database (DCDB) (2009), Queensland Valuation and Sales Database (QVAS) (2009); Queensland Nature Refuges (2009); Queensland Estates (2009); Queensland Herbarium's Regional Ecosystem, Water Body and Wetlands datasets (2009); Statewide Landcover & Trees Study (SLATS) Queensland Dams and Waterbodies (2009) and land cover change data; scanned aerial photography (1999-2009).Additional verbal & written information on land uses & their locations was obtained from regional Queensland Government officers, Local Government Authorities, land owners & managers, private industry as well as from field observations & checking.Data captureA range of existing digital datasets containing land use information was collated from the Queensland Government spatial data inventory and prepared for use in a GIS using ArcGIS and ERDAS Imagine software.Processing steps To compile the 1999 baseline mapping, datasets containing baseline land cover (supplied by SLATS), Protected Areas, State Forest and Timber Reserves, plantations, coastal wetlands, reserves (from DCDB) and logged forests were interpreted in a spatial model to produce a preliminary land use raster image.The model incorporated a decision matrix which assigned each pixel a specific land use class according to a set of pre-determined rules.Individual catchments were clipped from the model output and enhanced with additional land use information interpreted primarily from Landsat TM and ETM imagery as well as scanned and hardcopy aerial photography (where available). The DCDB and other datasets containing land use information were used to help identify property and land use type boundaries. This process produced a draft land use raster.Verification of the draft land use dataset, particularly those with significant areas of intensive land uses, was undertaken by comparing mapped land use classes with observed land use classes in the field where possible. The final raster image was converted to a vector coverage in ARC/Info and GIS editing performed.The existing 1999 baseline (or later where available) land use dataset (vector) formed the basis for the 2006 and 2009 land use mapping. The 2006 & 2009 datasets were then updated primarily by interpretation of SPOT5 imagery, high-res orthophotography, scanned aerial photography and inclusion of expert local knowledge. This was performed in an ESRI ArcSDE geodatabase replication infrastructure, across some nine regional offices. The DCDB, QVAS, Estates, Queensland Herbarium wetlands and SLATS land cover change and waterbody datasets were used to assist in identification and delineation of property and land use type boundaries. Digitised areas of uniform land use type were assigned to land use classes according to ALUMC Version 7 (May 2010).This "current" land use mapping product presents a complete state-wide land use map of Queensland, after collating the most current land use datasets within a single mapping layer.An independent validation was undertaken to assess thematic (attribute) accuracy under the ALUM classification. Please refer to the orignal source data for the validation results.

    Dataset Citation

    Queensland Department of Science, Information Technology, Innovation and the Arts (2013) Bioregional_Assessment_Programme_Land use mapping - Queensland current. Bioregional Assessment Source Dataset. Viewed 21 December 2017, http://data.bioregionalassessments.gov.au/dataset/740d257f-b622-49c2-9745-be283239add3.

  15. N

    Historic Land Use Data

    • data.cityofnewyork.us
    • catalog.data.gov
    application/rdfxml +5
    Updated Nov 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Environmental Remediation (OER) (2021). Historic Land Use Data [Dataset]. https://data.cityofnewyork.us/Environment/Historic-Land-Use-Data/r9ca-6t4q
    Explore at:
    json, tsv, application/rdfxml, application/rssxml, csv, xmlAvailable download formats
    Dataset updated
    Nov 17, 2021
    Dataset authored and provided by
    Office of Environmental Remediation (OER)
    Description

    Historic land uses on lots that were vacant, privately owned, and zoned for manufacturing in 2009. Information came from a review of several years of historical Sanborn maps over the past 100 years.

    When the SPEED 1.0 mapping application was created in 2009, OER had its vendor examine historic land use maps on vacant, privately-owned, industrially-zoned tax lots. Up to seven years of maps for each lot were examined, and information was recorded that indicated industrial uses or potential environmental contamination such as historic fill. Data for an additional 139 lots requested by community-based organizations was added in 2014. Each record represents the information from a map from a particular year on a particular tax lot at that time. Limitations of funding determined the number of lots included and entailed that not all years were examined for each lot.

  16. Statewide Crop Mapping

    • data.ca.gov
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Statewide Crop Mapping [Dataset]. https://data.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    gdb, data, zip, rest service, shp, htmlAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  17. d

    GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-map-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Kenya, Oman, United States of America, Morocco, United Arab Emirates, Egypt, India, Hong Kong, Malaysia, Thailand
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live Map Data include:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  18. c

    The global electronic cartography market size is USD 26.94 billion in 2024...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The global electronic cartography market size is USD 26.94 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 9.49% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/electronic-cartography-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global electronic cartography market size is USD 26.94 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 9.49% from 2024 to 2031. Market Dynamics of Electronic Cartography Market

    Key Drivers for Electronic Cartography Market

    Rising use of Smartphones and IoT - The prominent factor that drives the market growth include the widespread use of smartphones, tablets, and electronic devices. In addition rise in the usage of Internet of Things (IoT) devices, heightened the demand for real-time mapping solutions, consequently driving the demand for the electronic cartography market. In addition, growing dependence on location-based services (LBS), Geographic Information Systems (GIS), and GPS applications for searching nearby theatre halls, gasoline stations, restaurants, urban planning, disaster management, is another factor that drives the demand for electronic cartography during the forecast period.
    The increasing need for real-time data mapping to create precise and current digital representations, combined with the capability to analyze and visualize streaming data from sensors, devices, and social media feeds, is expected to propel market growth.
    

    Key Restraints for Electronic Cartography Market

    Integrating geographic,and geo-social data from different sources, such as social media and satellite imagery, can be challenging due to differences in data formats and scales.
    Lack of expertise among users regarding the adoption of electronic cartography in marine industry may hampered the market growth
    

    Introduction of the Electronic Cartography Market

    Electronic cartography is a technology that allows to simulate the surrounding area with the help of special technical means and computer programs. Electronic cartography integrated with various processes such as data processing, data acquisitions, map distribution, and map creation. As the demand for topographical information systems grows, the deployment of digital mapping has grown in the government and public sectors. The Science & Technology Directorate (S&T), in May 2024,has launched a digital indoor map navigator Mappedin. This digital indoor map navigator transform floor plans into interactive and easily maintainable digitized maps, and is currently being used by both response agencies and corporate clients. Mappedin provides high-quality 3D map creation, easy-to-use mapping tools and data, map sharing, and data maintenance, to city executives, building owner operators and first responders to make and deliver maps for a variety of safety-related situations—from advance preparation and planning to assistance during emergency incidents. Additionally the rapid rise in the number of smartphone and internet users has fueled industry expansion. Additionally, the increasing number of connected and semi-autonomous vehicles along with anticipated advancements in self-driving and navigation technologies, are expected to boost the demand for electronic cartography market.

  19. n

    Land Use Mapping Project

    • cmr.earthdata.nasa.gov
    • access.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Land Use Mapping Project [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214609764-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1992 - Dec 31, 1992
    Area covered
    Description

    Human use of the land has a large effect on the structure of terrestrial ecosystems and the dynamics of biogeochemical cycles. For this reason, terrestrial ecosystem and biogeochemistry models require moderate resolution information on land use in order to make realistic predictions. Few such datasets currently exist.

    This collection consists of output from models that estimate the spatial pattern of land use in four land-use categories by relating a high-resolution land-cover dataset to state-level census data on land use. The models have been parameterized using a goodness-of-fit measure.

    The land cover product used was from the IGBP DISCover global product, derived from 1 km AVHRR imagery, with 16 land cover classes (Belward et al., 1999). Land-use data at state-level resolution came from the USDA's Major Land Uses database (USDA, 1996), aggregated into the four general land-use categories described below.

    The model was used to generate maps of land use in 1992 for the conterminous U.S. at 0.5 degree spatial resolution. Two different parameterization schemes were used to spatially interpolate land use from land cover, based on the state-level land use census data: 1) a National Parameterization, and 2) a Regional Parameterization.

    For the National Parameterization, a single parameterization relating aggregate land cover and state-level land use. For the Regional Parameterization, a separate parameterization was used for each of seven different regions. The seven regions include: Northeast, Southeast, East North-central, West North-central, Southern Plains, Mountain, and Pacific. These regions are substantially different in terms of land use and land cover. In both cases, the results are a nationally gridded map at 0.5 degrees of land use categories for cropland, pasture/range, forest, and other land use; the other land use category is also further spilt into three additional subcategories (forested, non-forested, non-vegetated).

    This project is currently being extended to other regions of the globe, and for other time periods, where both land use census data and image-derived land cover data are available.

    Available Datasets:

    1) US Land Use - 1992 National Parameterization 2) US Land Use - 1992 Regional Parameterization

    Each dataset has 4 major land use categories and 3 subcategories of the Other major land use category.

  20. N

    Primary Land Use Tax Lot Output - Map (MapPLUTO)

    • data.cityofnewyork.us
    • s.cnmilf.com
    • +2more
    application/rdfxml +5
    Updated Jul 25, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2013). Primary Land Use Tax Lot Output - Map (MapPLUTO) [Dataset]. https://data.cityofnewyork.us/City-Government/Primary-Land-Use-Tax-Lot-Output-Map-MapPLUTO-/f888-ni5f
    Explore at:
    csv, json, application/rssxml, tsv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 25, 2013
    Dataset authored and provided by
    Department of City Planning (DCP)
    Description

    Extensive land use and geographic data at the tax lot level in GIS format (ESRI Shapefile). Contains more than seventy fields derived from data maintained by city agencies, merged with tax lot features from the Department of Finance’s Digital Tax Map, clipped to the shoreline.

    All previously released versions of this data are available at BYTES of the BIG APPLE- Archive

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2025). Motor Vehicle Use Map: Roads (Feature Layer) [Dataset]. https://catalog.data.gov/dataset/motor-vehicle-use-map-roads-feature-layer-7d219
Organization logo

Motor Vehicle Use Map: Roads (Feature Layer)

Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
Description

The feature class indicates the specific types of motorized vehicles allowed on the designated routes and their seasons of use. The feature class is designed to be consistent with the MVUM (Motor Vehicle Use Map). It is compiled from the GIS Data Dictionary data and NRM Infra tabular data that the administrative units have prepared for the creation of their MVUMs. Only roads with a SYMBOL attribute value of 1, 2, 3, 4, 11, and 12 are Forest Service System roads and contain data concerning their availability for OHV (Off Highway Vehicle) use. This data is published and refreshed on a unit by unit basis as needed. Data for each individual unit must be verified and proved consistent with the published MVUMs prior to publication.The Forest Service's Natural Resource Manager (NRM) Infrastructure (Infra) is the agency standard for managing and reporting information about inventory of constructed features and land units as well as the permits sold to the general public and to partners. Metadata

Search
Clear search
Close search
Google apps
Main menu