Facebook
TwitterThe feature class indicates the specific types of motorized vehicles allowed on the designated routes and their seasons of use. The feature class is designed to be consistent with the MVUM (Motor Vehicle Use Map). It is compiled from the GIS Data Dictionary data and Infra tabular data that the administrative units have prepared for the creation of their MVUMs. Only trails with the symbol value of 5-12, 16, 17 are Forest Service System trails and contain data concerning their availability for motorized use. This data is published and refreshed on a unit by unit basis as needed. Individual unit's data must be verified and proved consistent with the published MVUMs prior to publication in the EDW. Click this link for full metadata description: Metadata _
Facebook
TwitterComposite map of Future Land Use. This is a pdf document.
Facebook
TwitterGeneral Plan Land Use_Updated in November, 2024
Facebook
TwitterHistoric land uses on lots that were vacant, privately owned, and zoned for manufacturing in 2009. Information came from a review of several years of historical Sanborn maps over the past 100 years. When the SPEED 1.0 mapping application was created in 2009, OER had its vendor examine historic land use maps on vacant, privately-owned, industrially-zoned tax lots. Up to seven years of maps for each lot were examined, and information was recorded that indicated industrial uses or potential environmental contamination such as historic fill. Data for an additional 139 lots requested by community-based organizations was added in 2014. Each record represents the information from a map from a particular year on a particular tax lot at that time. Limitations of funding determined the number of lots included and entailed that not all years were examined for each lot.
Facebook
Twitter.pdf of Land Use map from 2021.
Facebook
TwitterHuman use of the land has a large effect on the structure of terrestrial ecosystems and the dynamics of biogeochemical cycles. For this reason, terrestrial ecosystem and biogeochemistry models require moderate resolution information on land use in order to make realistic predictions. Few such datasets currently exist.
This collection consists of output from models that estimate the spatial pattern of land use in four land-use categories by relating a high-resolution land-cover dataset to state-level census data on land use. The models have been parameterized using a goodness-of-fit measure.
The land cover product used was from the IGBP DISCover global product, derived from 1 km AVHRR imagery, with 16 land cover classes (Belward et al., 1999). Land-use data at state-level resolution came from the USDA's Major Land Uses database (USDA, 1996), aggregated into the four general land-use categories described below.
The model was used to generate maps of land use in 1992 for the conterminous U.S. at 0.5 degree spatial resolution. Two different parameterization schemes were used to spatially interpolate land use from land cover, based on the state-level land use census data: 1) a National Parameterization, and 2) a Regional Parameterization.
For the National Parameterization, a single parameterization relating aggregate land cover and state-level land use. For the Regional Parameterization, a separate parameterization was used for each of seven different regions. The seven regions include: Northeast, Southeast, East North-central, West North-central, Southern Plains, Mountain, and Pacific. These regions are substantially different in terms of land use and land cover. In both cases, the results are a nationally gridded map at 0.5 degrees of land use categories for cropland, pasture/range, forest, and other land use; the other land use category is also further spilt into three additional subcategories (forested, non-forested, non-vegetated).
This project is currently being extended to other regions of the globe, and for other time periods, where both land use census data and image-derived land cover data are available.
Available Datasets:
1) US Land Use - 1992 National Parameterization 2) US Land Use - 1992 Regional Parameterization
Each dataset has 4 major land use categories and 3 subcategories of the Other major land use category.
Facebook
TwitterUnder various scenarios, land use changes in Belgium are simulated at 10-meter resolution. Three SSP-RCP scenarios were used to model the land use trends in the present (2020) and the year 2050 at the national level in Belgium. Key inputs to the model include regional land use demand, quantification of the suitability of grid cells for different land use types, and a reference land cover map. The 10 meter-resolution baseline land use map of Belgium was sourced from the European Space Agency (ESA) WorldCover for the reference year 2020. The classification systems ESA is different from LUH2. To make these datasets comparable for land use simulations, we performed reclassification based on the guidelines provided by Pérez-Hoyos et al. (2012); Dong et al. (2018); Liao et al. (2020) to unify the land use classes, except water, into six general categories: 1) urban, 2) cropland, 3) pasture, 4) forestry, 5) bare/sparse vegetation, and 6) undefined.
Facebook
TwitterMountain View 2030 General Plan land use designations
Facebook
TwitterThe feature class indicates the specific types of motorized vehicles allowed on the designated routes and their seasons of use. The feature class is designed to be consistent with the MVUM (Motor Vehicle Use Map). It is compiled from the GIS Data Dictionary data and NRM Infra tabular data that the administrative units have prepared for the creation of their MVUMs. Only roads with a SYMBOL attribute value of 1, 2, 3, 4, 11, and 12 are Forest Service System roads and contain data concerning their availability for OHV (Off Highway Vehicle) use. This data is published and refreshed on a unit by unit basis as needed. Data for each individual unit must be verified and proved consistent with the published MVUMs prior to publication.The Forest Service's Natural Resource Manager (NRM) Infrastructure (Infra) is the agency standard for managing and reporting information about inventory of constructed features and land units as well as the permits sold to the general public and to partners. Metadata
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).
Facebook
Twitter[Metadata] Description: Agricultural Land Use Maps (ALUM) for islands of Kauai, Oahu, Maui, Molokai, Lanai and Hawaii as of 1978-1980. Sources: State Department of Agriculture; Hawaii Statewide GIS Program, Office of Planning. Note: August, 2018 - Corrected one incorrect record, removed coded value attribute domain.For more information on data sources and methodologies used, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/alum.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Facebook
TwitterLand Use and Zoning data for the City of Los Angeles as well as Los Angeles County.
Facebook
TwitterThe following data is provided as a public service, for informational purposes only. This data should not be construed as legal advice. Users of this data should independently verify its determinations prior to taking any action under the California Environmental Quality Act (CEQA) or any other law. The State of California makes no warranties as to accuracy of this data.
General plan land use element data was collected from 532 of California's 539 jurisdictions. An effort was made to contact each jurisdiction in the state and request general plan data in whatever form available. In the event that general plan maps were not available in a GIS format, those maps were converted from PDF or image maps using geo-referencing techniques and then transposing map information to parcel geometries sourced from county assessor data. Collection efforts began in late 2021 and were mostly finished in late 2022. Some data has been updated in 2023. Sources and dates are documented in the "Source" and "Date" columns with more detail available in the accompanying sources table. Data from a CNRA funded project, performed at UC Davis was used for 7 jurisdictions that had no current general plan land use maps available. Information about that CNRA funded project is available here: https://databasin.org/datasets/8d5da7200f4c4c2e927dafb8931fe75d
Individual general plan maps were combined for this statewide dataset. As part of the aggregation process, contiguous areas with identical use designations, within jurisdictions, were merged or dissolved. Some features representing roads with right-of-way or Null zone designations were removed from this data. Features less than 4 square meters in area were also removed.
Facebook
TwitterLong Range Land Use Plan illustrating existing and potential development by land use classifications. Recommended print size 36" X 66". Questions about this map call 703-792-6830.
Facebook
TwitterThis web map service (WMS) is the 25m raster version of the Land Cover Map 2015 (LCM2015) for Great Britain and Northern Ireland. It shows the target habitat class with the highest percentage cover in each 25m x 25m pixel. The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats.The 25m raster web map service is the most detailed of the LCM2015 raster products, both thematically and spatially, and it is derived from the LCM2015 vector product. For LCM2015 per-pixel classifications were conducted, using a random forest classification algorithm. The resultant classifications were then mosaicked together, with the best classifications taking priority. This produced a per-pixel classification of the UK, which was then 'imported' into the spatial framework, recording a number of attributes, including the majority class per polygon which is the Land Cover class for each polygon.Find out more about Land Cover Map 2015 at ceh.ac.uk.LCM2015 is available for download to Catchment Based Approach (CaBA) Partnerships in the desktop GIS data package. Please contact your CaBA catchment host for further information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Land-use control and planning instruments face new challenges amid growing pressure for urbanization and annexation of valuable agricultural land and natural areas. This paper presents the land-use change propensity map, which shows the local potential for specific land-use changes. Propensity is derived empirically on the basis of historical land-use changes, with an explicit evaluation of characteristics that contributed to land-use change. Each step in creating a propensity map is described: selecting data that best represents land-use changes, identifying potential drivers of land-use change and the statistical inference of their impact on land-use change on the basis of observed historical land-use changes. The resulting propensity for land-use change is represented in the form of a binary logit model that evaluates the probability of specific land-use changes. A series of propensity maps for the territory of the Tábor microregion in the Czech Republic was created to demonstrate the method. The scale of the propensity maps is 1:310,000, and they cover an area of 1002 km2. Each propensity map represents the specific propensity for conversion from non-urban uses to family, multi-family and individual recreation houses. The evaluated propensity can be further compared to existing or proposed land-use regulations.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Map showing land uses in the City of Austin jurisdictions. Upated during October of even years.
Facebook
TwitterMEJ aims to create easy-to-use, publicly-available maps that paint a holistic picture of intersecting environmental, social, and health impacts experienced by communities across the US.
With guidance from the residents of impacted communities, MEJ combines environmental, public health, and demographic data into an indicator of vulnerability for communities in every state. MEJ’s goal is to fill an existing data gap for individual states without environmental justice mapping tools, and to provide a valuable tool for advocates, scholars, students, lawyers, and policy makers.
The negative effects of pollution depend on a combination of vulnerability and exposure. People living in poverty, for example, are more likely to develop asthma or die due to air pollution. The method MEJ uses, following the method developed for CalEnviroScreen, reflects this in the two overall components of a census tract’s final “Cumulative EJ Impact”: population characteristics and pollution burden. The CalEnviroScreen methodology was developed through an intensive, multi-year effort to develop a science-backed, peer-reviewed tool to assess environmental justice in a holistic way, and has since been replicated by several other states.
CalEnviroScreen Methodology:
Population characteristics are a combination of socioeconomic data (often referred to as the social determinants of health) and health data that together reflect a populations' vulnerability to pollutants. Pollution burden is a combination of direct exposure to a pollutant and environmental effects, which are adverse environmental conditions caused by pollutants, such as toxic waste sites or wastewater releases. Together, population characteristics and pollution burden help describe the disproportionate impact that environmental pollution has on different communities.
Every indicator is ranked as a percentile from 0 to 100 and averaged with the others of the same component to form an overall score for that component. Each component score is then percentile ranked to create a component percentile. The Sensitive Populations component score, for example, is the average of a census tract’s Asthma, Low Birthweight Infants, and Heart Disease indicator percentiles, and the Sensitive Populations component percentile is the percentile rank of the Sensitive Populations score.
The Population Characteristics score is the average of the Sensitive Populations component score and the Socioeconomic Factors component score. The Population Characteristics percentile is the percentile rank of the Population Characteristics score.
The Pollution Burden score is the average of the Pollution Exposure component score and one half of the Environmental Effects component score (Environmental Effects may have a smaller effect on health outcomes than the indicators included the Exposures component so are weighted half as much as Exposures). The Pollution Burden percentile is the percentile rank of the Pollution Burden score.
The Populaton Characteristics and Pollution Burden scores are then multiplied to find the final Cumulative EJ Impact score for a census tract, and then this final score is percentile-ranked to find a census tract's final Cumulative EJ Impact percentile.
Census tracts with no population aren't given a Population Characteristics score.
Census tracts with an indicator score of zero are assigned a percentile rank of zero. Percentile rank is then only calculated for those census tracts with a score above zero.
Census tracts that are missing data for more than two indicators don't receive a final Cumulative EJ Impact ranking.
%3C!-- --%3E
Facebook
TwitterExtensive land use and geographic data at the tax lot level in GIS format (ESRI Shapefile). Contains more than seventy fields derived from data maintained by city agencies, merged with tax lot features from the Department of Finance’s Digital Tax Map, clipped to the shoreline. All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Facebook
TwitterLand cover has been interpreted from Satellite images and field checked, other information has been digitized from topographic maps
Members informations:
Attached Vector(s):
MemberID: 1
Vector Name: Land use
Source Map Name: SPOT Pan
Source Map Scale: 50000
Source Map Date: 1989/90
Projection: Polyconic on Modified Everest Ellipsoid
Feature_type: polygon
Vector
Land use maps, interpreted from SPOT panchromatic imagery and field
checked (18 classes)
Members informations:
Attached Vector(s):
MemberID: 2
Vector Name: Administrative boundaries
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: polygon
Vector
Dzongkhags (Districts) and Gewogs
Members informations:
Attached Vector(s):
MemberID: 3
Vector Name: Roads
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: lines
Vector
Road network
Attached Report(s)
Member ID: 4
Report Name: Atlas of Bhutan
Report Authors: Land use planning section
Report Publisher: Ministry of Agriculture, Thimpu
Report Date: 1997-06-01
Report
Land cover (1:250000) and area statistics of 20 Dzongkhags
Facebook
TwitterThe feature class indicates the specific types of motorized vehicles allowed on the designated routes and their seasons of use. The feature class is designed to be consistent with the MVUM (Motor Vehicle Use Map). It is compiled from the GIS Data Dictionary data and Infra tabular data that the administrative units have prepared for the creation of their MVUMs. Only trails with the symbol value of 5-12, 16, 17 are Forest Service System trails and contain data concerning their availability for motorized use. This data is published and refreshed on a unit by unit basis as needed. Individual unit's data must be verified and proved consistent with the published MVUMs prior to publication in the EDW. Click this link for full metadata description: Metadata _