100+ datasets found
  1. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-21401
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 22, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming GIS Data Collector market! This comprehensive analysis reveals a $2.5B market in 2025, projected to reach $4.2B by 2033, fueled by precision agriculture, infrastructure development, and technological advancements. Explore key trends, drivers, restraints, and leading companies shaping this dynamic sector.

  2. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-17975
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS Data Collector market is experiencing robust growth, driven by increasing adoption of precision agriculture techniques, expanding infrastructure development projects, and the rising need for accurate geospatial data across various industries. The market's Compound Annual Growth Rate (CAGR) is estimated to be around 8% for the forecast period of 2025-2033, projecting significant market expansion. This growth is fueled by technological advancements in GPS technology, improved data processing capabilities, and the increasing affordability of GIS data collection devices. Key segments driving market expansion include high-precision data collection systems and their application in agriculture, where farmers are increasingly leveraging real-time data for optimized resource management and increased yields. The industrial sector also contributes significantly to market growth, with applications ranging from construction and surveying to utility management and environmental monitoring. While the market faces certain restraints, such as the need for skilled professionals to operate the sophisticated equipment and the potential for data security concerns, these are outweighed by the overwhelming benefits of improved efficiency, accuracy, and cost savings provided by GIS data collectors. The market's regional landscape shows significant participation from North America and Europe, owing to established technological infrastructure and early adoption of advanced GIS technologies. However, rapid growth is expected in the Asia-Pacific region, especially in countries like China and India, fueled by infrastructure development and expanding agricultural activities. Leading players like Garmin, Trimble, and Hexagon are driving innovation and competition, while a growing number of regional players offer more cost-effective solutions. The competitive landscape is characterized by a mix of established global players and regional manufacturers. The established players leverage their technological expertise and extensive distribution networks to maintain market leadership. However, the increasing affordability and accessibility of GIS data collection technologies are attracting new entrants, creating a more dynamic market. Future growth will likely be shaped by the integration of artificial intelligence and machine learning into GIS data collection systems, further enhancing data processing capabilities and automation. The continued development of robust and user-friendly software applications will also contribute to market expansion. Furthermore, the adoption of cloud-based GIS platforms is expected to increase, facilitating greater data sharing and collaboration. This convergence of hardware and software innovations will drive market growth and broaden the applications of GIS data collectors across diverse sectors.

  3. a

    Service Locations

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jan 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Apex, North Carolina (2025). Service Locations [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/apexnc::service-locations
    Explore at:
    Dataset updated
    Jan 5, 2025
    Dataset authored and provided by
    Town of Apex, North Carolina
    Area covered
    Description

    The construction of this data model was adapted from the Telvent Miner & Miner ArcFM MultiSpeak data model to provide interface functionality with Milsoft Utility Solutions WindMil engineering analysis program. Database adaptations, GPS data collection, and all subsequent GIS processes were performed by Southern Geospatial Services for the Town of Apex Electric Utilities Division in accordance to the agreement set forth in the document "Town of Apex Electric Utilities GIS/GPS Project Proposal" dated March 10, 2008. Southern Geospatial Services disclaims all warranties with respect to data contained herein. Questions regarding data quality and accuracy should be directed to persons knowledgeable with the forementioned agreement.The data in this GIS with creation dates between March of 2008 and April of 2024 were generated by Southern Geospatial Services, PLLC (SGS). The original inventory was performed under the above detailed agreement with the Town of Apex (TOA). Following the original inventory, SGS performed maintenance projects to incorporate infrastructure expansion and modification into the GIS via annual service agreements with TOA. These maintenances continued through April of 2024.At the request of TOA, TOA initiated in house maintenance of the GIS following delivery of the final SGS maintenance project in April of 2024. GIS data created or modified after April of 2024 are not the product of SGS.With respect to SGS generated GIS data that are point features:GPS data collected after January 1, 2013 were surveyed using mapping grade or survey grade GPS equipment with real time differential correction undertaken via the NC Geodetic Surveys Real Time Network (VRS). GPS data collected prior to January 1, 2013 were surveyed using mapping grade GPS equipment without the use of VRS, with differential correction performed via post processing.With respect to SGS generated GIS data that are line features:Line data in the GIS for overhead conductors were digitized as straight lines between surveyed poles. Line data in the GIS for underground conductors were digitized between surveyed at grade electric utility equipment. The configurations and positions of the underground conductors are based on TOA provided plans. The underground conductors are diagrammatic and cannot be relied upon for the determination of the actual physical locations of underground conductors in the field.The Service Locations feature class was created by Southern Geospatial Services (SGS) from a shapefile of customer service locations generated by dataVoice International (DV) as part of their agreement with the Town of Apex (TOA) regarding the development and implemention of an Outage Management System (OMS).Point features in this feature class represent service locations (consumers of TOA electric services) by uniquely identifying the features with the same unique identifier as generated for a given service location in the TOA Customer Information System (CIS). This is also the mechanism by which the features are tied to the OMS. Features are physically located in the GIS based on CIS address in comparison to address information found in Wake County GIS property data (parcel data). Features are tied to the GIS electric connectivity model by identifying the parent feature (Upline Element) as the transformer that feeds a given service location.SGS was provided a shapefile of 17992 features from DV. Error potentially exists in this DV generated data for the service location features in terms of their assigned physical location, phase, and parent element.Regarding the physical location of the features, SGS had no part in physically locating the 17992 features as provided by DV and cannot ascertain the accuracy of the locations of the features without undertaking an analysis designed to verify or correct for error if it exists. SGS constructed the feature class and loaded the shapefile objects into the feature class and thus the features exist in the DV derived location. SGS understands that DV situated the features based on the address as found in the CIS. No features were verified as to the accuracy of their physical location when the data were originally loaded. It is the assumption of SGS that the locations of the vast majority of the service location features as provided by DV are in fact correct.SGS understands that as a general rule that DV situated residential features (individually or grouped) in the center of a parcel. SGS understands that for areas where multiple features may exist in a given parcel (such as commercial properties and mobile home parks) that DV situated features as either grouped in the center of the parcel or situated over buildings, structures, or other features identifiable in air photos. It appears that some features are also grouped in roads or other non addressed locations, likely near areas where they should physically be located, but that these features were not located in a final manner and are either grouped or strung out in a row in the general area of where DV may have expected they should exist.Regarding the parent and phase of the features, the potential for error is due to the "first order approximation" protocol employed by DV for assigning the attributes. With the features located as detailed above, SGS understands that DV identified the transformer closest to the service location (straight line distance) as its parent. Phase was assigned to the service location feature based on the phase of the parent transformer. SGS expects that this protocol correctly assigned parent (and phase) to a significant portion of the features, however this protocol will also obviously incorretly assign parent in many instances.To accurately identify parent for all 17992 service locations would require a significant GIS and field based project. SGS is willing to undertake a project of this magnitude at the discretion of TOA. In the meantime, SGS is maintaining (editing and adding to) this feature class as part of the ongoing GIS maintenance agreement that is in place between TOA and SGS. In lieu of a project designed to quality assess and correct for the data provided by DV, SGS will verify the locations of the features at the request of TOA via comparison of the unique identifier for a service location to the CIS address and Wake County parcel data address as issues arise with the OMS if SGS is directed to focus on select areas for verification by TOA. Additionally, as SGS adds features to this feature class, if error related to the phase and parent of an adjacent feature is uncovered during a maintenance, it will be corrected for as part of that maintenance.With respect to the additon of features moving forward, TOA will provide SGS with an export of CIS records for each SGS maintenance, SGS will tie new accounts to a physical location based on address, SGS will create a feature for the CIS account record in this feature class at the center of a parcel for a residential address or at the center of a parcel or over the correct (or approximately correct) location as determined via air photos or via TOA plans for commercial or other relevant areas, SGS will identify the parent of the service location as the actual transformer that feeds the service location, and SGS will identify the phase of the service address as the phase of it's parent.Service locations with an ObjectID of 1 through 17992 were originally physically located and attributed by DV.Service locations with an ObjectID of 17993 or higher were originally physically located and attributed by SGS.DV originated data are provided the Creation User attribute of DV, however if SGS has edited or verified any aspect of the feature, this attribute will be changed to SGS and a comment related to the edits will be provided in the SGS Edits Comments data field. SGS originated features will be provided the Creation User attribute of SGS. Reference the SGS Edits Comments attribute field Metadata for further information.

  4. Configuring Esri Collector for High-Accuracy Data Collection

    • storymaps-k12.hub.arcgis.com
    Updated Aug 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri K12 GIS Organization (2021). Configuring Esri Collector for High-Accuracy Data Collection [Dataset]. https://storymaps-k12.hub.arcgis.com/documents/87aa0376199346e4b956cb29ff9c1a5f
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri K12 GIS Organization
    Description

    Summary: How to configure Esri Collector for ArcGIS with a Bad Elf GPS Receiver for High-Accuracy Field Data Collection Storymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) 1: Standard 1-LS3-1 - Heredity: Inheritance and Variation of Traits - Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parentsGrade level(s) 4: Standard 4-ESS2-2 - Earth’s Systems - Analyze and interpret data from maps to describe patterns of Earth’s featuresGrade level(s) 5: Standard 5-ESS1-2 - Earth’s Place in the Universe - Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night skyGrade level(s) 6-8: Standard MS-LS4-5 - Biological Evolution: Unity and Diversity - Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.Grade level(s) 6-8: Standard MS-LS4-6 - Biological Evolution: Unity and Diversity - Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over timeGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 9-12: Standard HS-LS4-4 - Biological Evolution: Unity and Diversity - Construct an explanation based on evidence for how natural selection leads to adaptation of populationsGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:featurebadelfselectgpsApproximate Flesch-Kincaid reading grade level: 9.9. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.

  5. H

    GIS database

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nang Tin Win (2023). GIS database [Dataset]. http://doi.org/10.7910/DVN/TV7J27
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Nang Tin Win
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27

    Time period covered
    Oct 1, 2020 - Sep 30, 2022
    Area covered
    Myanmar (Burma)
    Dataset funded by
    United States Agency for International Developmenthttp://usaid.gov/
    Description

    It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

  6. G

    GIS Data Collector Report

    • promarketreports.com
    doc, pdf, ppt
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). GIS Data Collector Report [Dataset]. https://www.promarketreports.com/reports/gis-data-collector-155686
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming GIS Data Collector market, projected to reach $4.7 billion by 2033 with an 8% CAGR. This comprehensive analysis explores market drivers, trends, restraints, key players (Garmin, Trimble, Hexagon), and regional growth opportunities in agriculture, forestry, and industrial applications. Get insights into high-precision vs. general precision segments.

  7. G

    GIS Data Collector Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). GIS Data Collector Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/gis-data-collector-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Collector Market Outlook



    According to our latest research, the global GIS Data Collector market size reached USD 6.8 billion in 2024, reflecting robust demand across multiple industries. The market is projected to grow at a healthy CAGR of 11.2% from 2025 to 2033, reaching an anticipated value of USD 19.7 billion by 2033. This significant expansion is driven by increasing adoption of geospatial technologies in urban planning, environmental monitoring, and the digital transformation strategies of enterprises worldwide. As per our findings, the surge in smart city initiatives and the proliferation of IoT-based mapping solutions are key contributors to the accelerating growth of the GIS Data Collector market globally.




    The primary growth driver for the GIS Data Collector market is the escalating need for precise and real-time geospatial data across diverse sectors. Urbanization and the rapid expansion of metropolitan regions have intensified the demand for advanced mapping and surveying tools, enabling city planners and government agencies to make informed decisions. The integration of GIS data collectors with cutting-edge technologies such as artificial intelligence, machine learning, and cloud computing has further enhanced data accuracy and accessibility. As organizations seek to optimize resource allocation and improve operational efficiency, the utilization of GIS data collectors has become indispensable in applications ranging from infrastructure management to disaster response and land administration.




    Another crucial factor propelling the market is the growing use of GIS data collectors in environmental monitoring and natural resource management. With the increasing frequency of climate-related events and the global emphasis on sustainability, accurate geospatial data is vital for tracking environmental changes, managing agricultural lands, and monitoring deforestation or water resources. Advanced GIS data collectors equipped with remote sensing and mobile mapping capabilities are enabling stakeholders to gather high-resolution data, analyze spatial patterns, and implement effective conservation strategies. The synergy between GIS and remote sensing technologies is empowering organizations to address environmental challenges more proactively and efficiently.




    Technological advancements in data collection methods have also played a pivotal role in shaping the GIS Data Collector market landscape. The advent of unmanned aerial vehicles (UAVs), mobile mapping systems, and real-time kinematic (RTK) GPS has revolutionized the way geospatial data is captured and processed. These innovations have not only improved the accuracy and speed of data collection but have also reduced operational costs and enhanced safety in field surveys. The integration of GIS data collectors with cloud-based platforms allows seamless data sharing and collaboration, fostering a more connected and agile ecosystem for geospatial data management. As industries continue to digitize their operations, the demand for sophisticated and user-friendly GIS data collection solutions is expected to witness sustained growth.



    Field Data Collection Software has become an integral component in the realm of GIS data collection, providing users with the capability to efficiently gather, process, and analyze geospatial data in real time. This software facilitates seamless integration with various data collection devices, such as GPS receivers and mobile mapping systems, enabling field operatives to capture high-precision data with ease. The adoption of Field Data Collection Software is particularly beneficial in sectors like urban planning and environmental monitoring, where timely and accurate data is crucial for decision-making. By leveraging cloud-based platforms, this software ensures that data collected in the field is instantly accessible to stakeholders, promoting collaboration and enhancing the overall efficiency of geospatial projects. As the demand for real-time data insights grows, the role of Field Data Collection Software in supporting dynamic and responsive GIS operations continues to expand.




    From a regional perspective, North America currently dominates the GIS Data Collector market, followed closely by Europe and Asia Pacific. The strong presence of leading technology providers, substantial investments in smart infrastructure, and suppo

  8. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  9. d

    GIS Data | Global Consumer Visitation Insights to Inform Marketing and...

    • datarade.ai
    .csv
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | Global Consumer Visitation Insights to Inform Marketing and Operations Decisions | Location Data | Mobile Location Data [Dataset]. https://datarade.ai/data-products/gapmaps-gis-data-by-azira-global-mobile-location-data-cur-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jun 12, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Mauritius, Korea (Democratic People's Republic of), Lao People's Democratic Republic, Maldives, Zambia, Swaziland, Samoa, Cook Islands, Solomon Islands, Iraq
    Description

    GapMaps GIS Data by Azira uses location data on mobile phones sourced by Azira which is collected from smartphone apps when the users have given their permission to track their location. It can shed light on consumer visitation patterns (“where from” and “where to”), frequency of visits, profiles of consumers and much more.

    Businesses can utilise GIS data to answer key questions including: - What is the demographic profile of customers visiting my locations? - What is my primary catchment? And where within that catchment do most of my customers travel from to reach my locations? - What points of interest drive customers to my locations (ie. work, shopping, recreation, hotel or education facilities that are in the area) ? - How far do customers travel to visit my locations? - Where are the potential gaps in my store network for new developments?
    - What is the sales impact on an existing store if a new store is opened nearby? - Is my marketing strategy targeted to the right audience? - Where are my competitor's customers coming from?

    Mobile Location data provides a range of benefits that make it a valuable GIS Data source for location intelligence services including: - Real-time - Low-cost at high scale - Accurate - Flexible - Non-proprietary - Empirical

    Azira have created robust screening methods to evaluate the quality of Mobile location data collected from multiple sources to ensure that their data lake contains only the highest-quality mobile location data.

    This includes partnering with trusted location SDK providers that get proper end user consent to track their location when they download an application, can detect device movement/visits and use GPS to determine location co-ordinates.

    Data received from partners is put through Azira's data quality algorithm discarding data points that receive a low quality score.

    Use cases in Europe will be considered on a case to case basis.

  10. Data from: VCR LTER Global Positioning System Projects 1992 to 2004

    • search.dataone.org
    Updated Jun 3, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles Carlson (2020). VCR LTER Global Positioning System Projects 1992 to 2004 [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-vcr%2F156%2F20
    Explore at:
    Dataset updated
    Jun 3, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Charles Carlson
    Time period covered
    Feb 1, 1994 - Dec 31, 2004
    Area covered
    Variables measured
    LAT, LON, DATE, UTMX, UTMY, COMMENTS, ELEV_ELL, ELEV_MSL, FILENAME, LOCATION, and 1 more
    Description

    This dataset is a compendium of GPS Data collected by Randy Carlson and collaborators on the Virginia Coast Reserve (primarily), Plum Island and North Inlet. A master data table was extracted by Charles L. Carlson during 2013 that includes all the individual point locations recovered from individual surveys. In addition to the data table, the data is also shared as a .zip file containing a static web page with links to particular projects and the underlying data. To use the data, unzip it and use your web browser to open the index.html file. Web page contents include: American Oyster Catchers on the Virginia Coast Reserve - 2003 Lynette Winters - Salicornia - MSL elevation project Dynamic Evolution of Barrier Island Morphology and Ecology from 1996-2002 Documented Using High -Resolution GPS-GIS Topographic Mapping Surveys, Virginia Coast Reserve (for GSA, Denver, CO Oct 27-30, 2002 Broadwater Tower Overwash Fan Photos - Feburary 15, 2002 Hog Island Bay DGPS Drifter Study 2001 Ray Dueser/Nancy Moncrief Small Mammal GPS/GIS A Topographical History of North Myrtle Island, 1974 to 2001 Ray Dueser/Nancy Moncrief - Highest Elevations on VCR Barrier Islands Myrtle Island Planimetric area, Surface area & Volumetric Calculations 1996-2001 Myrtle, Ship Shoal GIS/GPS UTM Shape Files and Grids Myrtle, Ship Shoal, ESNWR, Shirley, Steelman's Landing Text Files Complete List of All Small Mammal Trap locations 1995 - 2001 Ship Shoal Island Small Mammal Traps 1997 - 2000 LTER Cross-Site GPS Surveys Hobcaw Barony / Baruch Institue SET/GPS Survey, South Carolina, December 2000 PIE/LTER - Plum Island Sound GPS Network, July 1998 Montandon Marsh at Bucknell University, Lewisburg, Pennsylvania 1997 Bathymetric Survey Procedures, Schematic Diagrams and Instructions The following instructions and procedures are used with reference to the Trimble 4000 SE Global Positioning System receiver, the Trimble NavBeacon XL, the Innerspace Digital Fathometer (Model 448) and the Innerspace DataLog with Guidance Software. GPS-referenced digital bathymetry Schematic Diagram of DGPS/Digital Fathometer connections for bathymetry Instructions for DataLog w/Guidance Software (Innerspace Digital Fathometer) Instructions for Trimble 4000 SE GPS Receiver and Trimble Navbeacon XL Innerspace Digital Fathometer - Model 448 - Field Protocol for Bathymetric Surveys Archived Bathymetric Projects Hog Island Bay DGPS Bathymetric Survey, 1999/2000 Phillip's Creek DGPS Bathymetric Survey 1999/2000 Oyster Harbor Bathymetric Survey (February 2000) Smith Point, Chesapeake Bay, Maryland DGPS Bathymetric Survey, Sept. 2001 Fishermans/Smith/Mockhorn Bay Bathymetric Survey 2000 to 2001 Post-processed Kinematic GPS data: Is It Precise? (1998) Small Mammal GPS/GIS Applications Hog Island Small Mammal Traps on T1, T2, T4, T5 Fowling Point 1996, 1997 Geomorphology Applications Parramore Island, Virginia Parramore Pimple Overwash Fans 1996 Parramore Pimple Overwash Fans 1997 Parramore Island Overwash Fans June 1998 Parramore Island Plugs - August 1998 Parramore Island Overwash Fan 1999 Hog Island, Virginia Broadwater Tower Overwash Fan June 1998 Photos of Broadwater Tower Overwash Fan - March 13, 1999 Broadwater Tower Overwash Fan 1999 Myrtle Island, Virginia A Topographical History of Myrtle Island, 1996 to 2001 Cobb and Fisherman's Islands, Virginia Cobb Island Overwash Fan July 1998 Fisherman's Island - ESNWR and ODU September /1998 Brownsville Farm GPS/GIS Project Long-Term Inundation Project, Christian/Thomas Brinson/Christian/Blum Project Eileen Appolone (ECU) Lisa Ricker's Static GPS Points in Northampton County Eileen Applone (East Carolina University) Static Survey d99124 Brownsville Farm GPS/GIS Project, Christian/Blum/Brinson VCR/LTER Tide Gauges and Water Level Recorders Red Bank Tide Gauge (part of Fowling Pt. survey) Hog Island WLR's 1996 (Brinson) Hog Island Tide Gauge 12/96 High tide surveys at PIE/LTER with Chuck Hopkinson Jim Morris, USC, at Debidue Island, South Carolina Benchmark BRNV in Brownsville, VCR/LTER Miscellaneous Static Sub-Networks Frank Day/Don Young - North Hog 2/99 (Excel File) or a TEXT file Frank Day 120 YR Old Dune Survey (Excel File) or a TEXT file Kindra Loomis GPS Kinematic/Topographic Survey 12/97 Clubhouse Creek at Parramore Island 1997 Phragmites on Southern Hog Island - (dataset only) (9/98) Oyster Harbor 1997 (Hayden & Porter) Southern Hog 1996 (Zieman) VCR/LTER Sediment Elevation Tables - Mockhorn/Wachapreague, August 2001 Aaron Mills Benchmarks - Research Field in Oyster, October 2001 Birds Nests on the Virginia Coast Reserve VCR Birds 1997 (Erwi... Visit https://dataone.org/datasets/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-vcr%2F156%2F20 for complete metadata about this dataset.

  11. D

    Geographic Information System Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Market Outlook



    The global Geographic Information System (GIS) market size was valued at approximately USD 8.1 billion in 2023 and is projected to reach around USD 16.3 billion by 2032, growing at a CAGR of 8.2% during the forecast period. One of the key growth factors driving this market is the increasing adoption of GIS technology across various industries such as agriculture, construction, and transportation, which is enhancing operational efficiencies and enabling better decision-making capabilities.



    Several factors are contributing to the robust growth of the GIS market. Firstly, the increasing need for spatial data in urban planning, infrastructure development, and natural resource management is accelerating the demand for GIS solutions. For instance, governments and municipalities globally are increasingly relying on GIS for planning and managing urban sprawl, transportation systems, and utility networks. This growing reliance on spatial data for efficient resource allocation and policy-making is significantly propelling the GIS market.



    Secondly, the advent of advanced technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and machine learning is enhancing the capabilities of GIS systems. The integration of these technologies with GIS allows for real-time data analysis and predictive analytics, making GIS solutions more powerful and valuable. For example, AI-powered GIS can predict traffic patterns and help in effective city planning, while IoT-enabled GIS can monitor and manage utilities like water and electricity in real time, thus driving market growth.



    Lastly, the rising focus on disaster management and environmental monitoring is further boosting the GIS market. Natural disasters like floods, hurricanes, and earthquakes necessitate the need for accurate and real-time spatial data to facilitate timely response and mitigation efforts. GIS technology plays a crucial role in disaster risk assessment, emergency response, and recovery planning, thereby increasing its adoption in disaster management agencies. Moreover, environmental monitoring for issues like deforestation, pollution, and climate change is becoming increasingly vital, and GIS is instrumental in tracking and addressing these challenges.



    Regionally, the North American market is expected to hold a significant share due to the widespread adoption of advanced technologies and substantial investments in infrastructure development. Asia Pacific is anticipated to witness the fastest growth, driven by rapid urbanization, industrialization, and supportive government initiatives for smart city projects. Additionally, Europe is expected to show steady growth due to stringent regulations on environmental management and urban planning.



    Component Analysis



    The GIS market by component is segmented into hardware, software, and services. The hardware segment includes devices like GPS, imaging sensors, and other data capture devices. These tools are critical for collecting accurate spatial data, which forms the backbone of GIS solutions. The demand for advanced hardware components is rising, as organizations seek high-precision instruments for data collection. The advent of technologies such as LiDAR and drones has further enhanced the capabilities of GIS hardware, making data collection faster and more accurate.



    In the software segment, GIS platforms and applications are used to store, analyze, and visualize spatial data. GIS software has seen significant advancements, with features like 3D mapping, real-time data integration, and cloud-based collaboration becoming increasingly prevalent. Companies are investing heavily in upgrading their GIS software to leverage these advanced features, thereby driving the growth of the software segment. Open-source GIS software is also gaining traction, providing cost-effective solutions for small and medium enterprises.



    The services segment encompasses various professional services such as consulting, integration, maintenance, and training. As GIS solutions become more complex and sophisticated, the need for specialized services to implement and manage these systems is growing. Consulting services assist organizations in selecting the right GIS solutions and integrating them with existing systems. Maintenance and support services ensure that GIS systems operate efficiently and remain up-to-date with the latest technological advancements. Training services are also crucial, as they help users maximize the potential of GIS technologies.



  12. e

    Data from: VCR LTER Global Positioning System Projects 1992 to 2004

    • portal.edirepository.org
    • search.dataone.org
    csv, zip
    Updated Feb 21, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles Carlson; Charles Carlson (2008). VCR LTER Global Positioning System Projects 1992 to 2004 [Dataset]. http://doi.org/10.6073/pasta/9f5c79e2fb719e67e49763c678b90ade
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Feb 21, 2008
    Dataset provided by
    EDI
    Authors
    Charles Carlson; Charles Carlson
    Time period covered
    Feb 1, 1994 - Dec 31, 2004
    Area covered
    Variables measured
    LAT, LON, DATE, UTMX, UTMY, COMMENTS, ELEV_ELL, ELEV_MSL, FILENAME, LOCATION, and 1 more
    Description

    This dataset is a compendium of GPS Data collected by Randy Carlson and collaborators on the Virginia Coast Reserve (primarily), Plum Island and North Inlet. A master data table was extracted by Charles L. Carlson during 2013 that includes all the individual point locations recovered from individual surveys. In addition to the data table, the data is also shared as a .zip file containing a static web page with links to particular projects and the underlying data. To use the data, unzip it and use your web browser to open the index.html file. Web page contents include:

         American Oyster Catchers on the Virginia Coast Reserve - 2003
    
    
         Lynette Winters - Salicornia - MSL elevation project
    
    
         Dynamic Evolution of Barrier Island Morphology and Ecology from 1996-2002 Documented Using High -Resolution GPS-GIS Topographic Mapping Surveys, Virginia Coast Reserve (for GSA, Denver, CO Oct 27-30, 2002
    
    
         Broadwater Tower Overwash Fan Photos - Feburary 15, 2002
    
    
         Hog Island Bay DGPS Drifter Study 2001
    
    
         Ray Dueser/Nancy Moncrief Small Mammal GPS/GIS
    
    
         A Topographical History of North Myrtle Island, 1974 to 2001
    
    
         Ray Dueser/Nancy Moncrief - Highest Elevations on VCR Barrier Islands
    
    
         Myrtle Island Planimetric area, Surface area & Volumetric Calculations 1996-2001
    
    
         Myrtle, Ship Shoal GIS/GPS UTM Shape Files and Grids
    
    
         Myrtle, Ship Shoal, ESNWR, Shirley, Steelman's Landing Text Files
    
    
         Complete List of All Small Mammal Trap locations 1995 - 2001
    
    
         Ship Shoal Island Small Mammal Traps 1997 - 2000
    
    
    
     LTER Cross-Site GPS Surveys
    
    
    
         Hobcaw Barony / Baruch Institue SET/GPS Survey, South Carolina, December
    
    
         2000 PIE/LTER - Plum Island Sound GPS Network, July 1998 Montandon Marsh at Bucknell University, Lewisburg, Pennsylvania 1997
    
    
    
     Bathymetric Survey Procedures, Schematic Diagrams and Instructions The following instructions and procedures are used with reference to the Trimble 4000 SE Global Positioning System receiver, the Trimble NavBeacon XL, the Innerspace Digital Fathometer (Model 448) and the Innerspace DataLog with Guidance Software. GPS-referenced digital bathymetry Schematic Diagram of DGPS/Digital Fathometer connections for bathymetry
     Instructions for DataLog w/Guidance Software (Innerspace Digital Fathometer)
     Instructions for Trimble 4000 SE GPS Receiver and Trimble Navbeacon XL
     Innerspace Digital Fathometer - Model 448 - Field Protocol for Bathymetric Surveys Archived Bathymetric Projects
    
    
    
         Hog Island Bay DGPS Bathymetric Survey, 1999/2000
    
    
         Phillip's Creek DGPS Bathymetric Survey 1999/2000
    
    
         Oyster Harbor Bathymetric Survey (February 2000)
    
    
         Smith Point, Chesapeake Bay, Maryland DGPS Bathymetric Survey, Sept. 2001
    
    
         Fishermans/Smith/Mockhorn Bay Bathymetric Survey 2000 to 2001
    
    
    
    
    
    
         Post-processed Kinematic GPS data: Is It Precise? (1998)
    
    
         Small Mammal GPS/GIS Applications
    
    
         Hog Island Small Mammal Traps on T1, T2, T4, T5
    
    
         Fowling Point 1996, 1997
    
    
    
      Geomorphology Applications 
    
    
    
         Parramore Island, Virginia
    
    
         Parramore Pimple Overwash Fans 1996
    
    
         Parramore Pimple Overwash Fans 1997
    
    
         Parramore Island Overwash Fans June 1998
    
    
         Parramore Island Plugs - August 1998
    
    
         Parramore Island Overwash Fan 1999
    
    
         Hog Island, Virginia
    
    
         Broadwater Tower Overwash Fan June 1998
    
    
         Photos of Broadwater Tower Overwash Fan - March 13, 1999
    
    
         Broadwater Tower Overwash Fan 1999
    
    
         Myrtle Island, Virginia
    
    
         A Topographical History of Myrtle Island, 1996 to 2001
    
    
         Cobb and Fisherman's Islands, Virginia
    
    
         Cobb Island Overwash Fan July 1998
    
    
         Fisherman's Island - ESNWR and ODU September /1998
    
  13. N

    Navigation and Mapping Solution Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Navigation and Mapping Solution Report [Dataset]. https://www.marketresearchforecast.com/reports/navigation-and-mapping-solution-538666
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Navigation and Mapping Solutions market is experiencing robust growth, driven by the increasing adoption of location-based services (LBS) across various sectors. The market's expansion is fueled by several key factors, including the proliferation of smartphones equipped with advanced GPS technology, the rising demand for real-time traffic updates and navigation assistance, and the increasing integration of mapping solutions into automotive systems. Furthermore, the development of sophisticated mapping technologies, such as 3D mapping and augmented reality (AR) overlays, is enhancing user experience and driving market penetration. The expanding use of these solutions in logistics and transportation, coupled with the growth of e-commerce and the demand for efficient delivery services, contributes significantly to the market's upward trajectory. We estimate the market size in 2025 to be around $15 billion, projecting a Compound Annual Growth Rate (CAGR) of 12% through 2033. Despite the promising outlook, market growth faces certain challenges. High initial investment costs associated with developing and maintaining advanced mapping systems may limit entry for smaller players. Data privacy concerns and regulatory restrictions regarding data collection and usage pose significant hurdles. The accuracy and reliability of mapping data remain critical factors affecting market adoption, particularly in remote or rapidly changing areas. Competition among established players like Google, TomTom, and Garmin is intense, demanding continuous innovation and strategic partnerships to maintain a competitive edge. Despite these restraints, the long-term prospects for the navigation and mapping solutions market remain positive, driven by ongoing technological advancements and expanding applications across diverse industries.

  14. M

    DNRGPS

    • gisdata.mn.gov
    • data.wu.ac.at
    windows_app
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps
    Explore at:
    windows_appAvailable download formats
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    Natural Resources Department
    Description

    DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

    DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

    DNRGPS does not require installation. Simply run the application .exe

    See the DNRGPS application documentation for more details.

    Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

    Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

    Prerequisite: .NET 4 Framework

    DNR Data and Software License Agreement

    Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

  15. Geographic Response Plan (GRP) Staging Areas

    • geodata.myfwc.com
    • data2-myfwc.opendata.arcgis.com
    • +2more
    Updated Jan 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Fish and Wildlife Conservation Commission (2015). Geographic Response Plan (GRP) Staging Areas [Dataset]. https://geodata.myfwc.com/datasets/geographic-response-plan-grp-staging-areas
    Explore at:
    Dataset updated
    Jan 15, 2015
    Dataset authored and provided by
    Florida Fish and Wildlife Conservation Commissionhttp://myfwc.com/
    Area covered
    Description

    For full FGDC metadata record, please click here.These data represent Staging and Response Locations collected by GPS for Mississippi, Alabama, and the Florida Panhandle prior to the Deepwater Horizon Oil Spill. The locations for the Peninsular portion of Florida, Georgia, South Carolina, Puerto Rico, and the US Virgin Islands have been compiled from numerous sources into this database schema and will at some later date (after Nov. 2010) be verified and validated by GPS. Staging and response locations were identified first by defining the types of locations that fit these descriptions. The broad categories were defined as Boat Ramp, Marina, Staging Area, or any combination of these. A marina may contain a boat ramp as well as a large parking lot with a seawall suitable for deploying equipment into the water. A staging area may contain just a waterfront park with access to the water, but no boat ramp or marina, but perhaps a dock or pier. These categories and attributes were used to design a specific database schema to collect information on these geographic features that could be used on a GPS-enabled field data collection device. Once the categories of information to be collected and the specifics of what types of information to be collected within each category were determined (the database schema), mobile devices were programmed to accomplish this task and area committee volunteers were used to conduct the field surveys. Field crews were given training on the devices. Guided by base maps identifying potential locations, they then traveled into the field to validate and collect specific GPS and attribute data on those locations. This was a cooperative effort between many federal, state, and local entities guided by FWC-FWRI that resulted in detailed and location-specific information on 366 staging area locations within Sector Mobile and a comprehensive GIS data set that is available on the DVD ROM and website as well a being used in the Geographic Response Plan Map Atlas production. Cyber-Tracker was the software used for this field data collection. Cyber-Tracker is a "shareware" software package developed as a data-capture tool designed for use in Environmental Conservation, Wildlife Biology and Disaster Relief. The software runs on numerous types of mobile devices and designing custom data capture processes for these devices requires no programming experience. Funded in large part by the European Commission and patroned by Harvard University, Cyber-Tracker Software has been a very valuable tool in the data collection efforts of this project. Cyber-Tracker Software can be found on the Internet at: http://www.cybertracker.co.za/.

  16. D

    Geospatial Analytics Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geospatial Analytics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/geospatial-analytics-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial Analytics Market Outlook



    In 2023, the global geospatial analytics market size was valued at approximately USD 55 billion and is projected to reach around USD 165 billion by 2032, growing at a CAGR of 12.5% during the forecast period. The market is driven by technological advancements and the increasing need for geospatial data across various industries.



    One of the key growth factors of the geospatial analytics market is the rapid advancement in geospatial technologies such as Geographic Information Systems (GIS), remote sensing, and global positioning systems (GPS). These technologies have significantly enhanced the accuracy and efficiency of data collection, analysis, and interpretation. Additionally, the integration of artificial intelligence (AI) and machine learning (ML) algorithms with geospatial analytics has further augmented its capabilities, making it an indispensable tool for decision-making across diverse sectors.



    Another significant driver of the geospatial analytics market is the growing adoption of location-based services and real-time data analysis. With the proliferation of smartphones and IoT devices, there is an increasing demand for applications that provide real-time location data. This has led to a surge in the use of geospatial analytics in urban planning, transportation and logistics, and disaster management. Companies and governments are leveraging geospatial data to optimize routes, manage resources efficiently, and respond swiftly to emergencies.



    Furthermore, the rising awareness about climate change and environmental sustainability has propelled the use of geospatial analytics in climate change adaptation and environmental monitoring. Governments and organizations are increasingly relying on geospatial data to understand environmental changes, assess risks, and devise strategies for climate resilience. This trend is particularly significant in regions prone to natural disasters, where timely and accurate geospatial data can save lives and minimize damages.



    From a regional perspective, North America holds a significant share of the geospatial analytics market, driven by the presence of major technology companies and extensive government initiatives focused on smart city development and environmental conservation. Europe follows closely, with substantial investments in geospatial technologies for urban planning and infrastructure development. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, fueled by rapid urbanization, industrialization, and government initiatives to enhance geospatial infrastructure.



    Component Analysis



    The geospatial analytics market is segmented into three main components: software, hardware, and services. Each of these components plays a pivotal role in the functioning and advancement of geospatial analytics. Starting with software, which encompasses a wide array of applications such as Geographic Information Systems (GIS), remote sensing software, and enterprise geospatial solutions. GIS software, in particular, is integral to the collection, storage, analysis, and visualization of geospatial data, enabling organizations to make informed decisions based on spatial patterns and relationships.



    Hardware components in the geospatial analytics market include devices and equipment used for data collection and processing, such as GPS devices, drones, LiDAR sensors, and remote sensing satellites. These hardware components are essential for acquiring high-resolution geospatial data from various sources, providing a comprehensive view of geographical areas. The evolution of drone technology and advancements in satellite imaging have significantly enhanced the capability to capture accurate and detailed geospatial information, driving the demand for advanced hardware solutions.



    Services in the geospatial analytics market encompass a range of offerings, including consulting, integration, maintenance, and support services. These services are crucial for the successful implementation and operation of geospatial analytics solutions. Consulting services help organizations identify the most suitable geospatial technologies and strategies to meet their specific needs. Integration services ensure seamless deployment of geospatial solutions within existing IT infrastructures, while maintenance and support services provide ongoing technical assistance and updates to keep the systems running smoothly.



    The interplay between software, hardware, and services is critical for the effective utilization

  17. n

    Global Positioning System Ground Control Points Acquired 1995 for the Forest...

    • access.earthdata.nasa.gov
    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Global Positioning System Ground Control Points Acquired 1995 for the Forest Ecosystem Dynamics Project Spatial Data Archive [Dataset]. https://access.earthdata.nasa.gov/collections/C1214603716-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1995 - Jan 30, 1995
    Area covered
    Description

    Forest Ecosystem Dynamics (FED) Project Spatial Data Archive: Global Positioning System Ground Control Points and Field Site Locations from 1995

    The Biospheric Sciences Branch (formerly Earth Resources Branch) within the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center and associated University investigators are involved in a research program entitled Forest Ecosystem Dynamics (FED) which is fundamentally concerned with vegetation change of forest ecosystems at local to regional spatial scales (100 to 10,000 meters) and temporal scales ranging from monthly to decadal periods (10 to 100 years). The nature and extent of the impacts of these changes, as well as the feedbacks to global climate, may be addressed through modeling the interactions of the vegetation, soil, and energy components of the boreal ecosystem.

    The Howland Forest research site lies within the Northern Experimental Forest of International Paper. The natural stands in this boreal-northern hardwood transitional forest consist of spruce-hemlock-fir, aspen-birch, and hemlock-hardwood mixtures. The topography of the region varies from flat to gently rolling, with a maximum elevation change of less than 68 m within 10 km. Due to the region's glacial history, soil drainage classes within a small area may vary widely, from well drained to poorly drained. Consequently, an elaborate patchwork of forest communities has developed, supporting exceptional local species diversity.

    This data set is in ARC/INFO export format and contains Global Positioning Systems (GPS) ground control points in and around the International Paper Experimental Forest, Howland ME.

    A Trimble roving receiver placed on the top of the cab of a pick-up truck and leveled was used to collect position information at selected sites (road intersections) across the FED project study area. The field collected data was differentially corrected using base files measured by a Trimble Community Base Station. The Community Base Station is run by the Forestry Department at the University of Maine, Orono (UMO). The base station was surveyed by the Surveying Engineering Department at UMO using classical geodetic methods. Trimble software was used to produce coordinates in Universal Transverse Mercator (UTM) WGS84. Coordinates were adjusted based on field notes. All points were collected during January 1995 and differentially corrected.

  18. n

    Differential GPS survey of points at Atlas Cove for control of 1987 aerial...

    • access.earthdata.nasa.gov
    • researchdata.edu.au
    • +1more
    cfm
    Updated Apr 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Differential GPS survey of points at Atlas Cove for control of 1987 aerial photography [Dataset]. http://doi.org/10.4225/15/58a522f656a52
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Apr 26, 2017
    Time period covered
    Jan 1, 2000 - Feb 28, 2000
    Area covered
    Description

    Dave Gardner was on Heard Island in January and February 2000 as part of the 2000 ANARE. Opportunistic use was made of the the differential gps system to take accurate locations of 16 points identified from the 1987 aerial photography, so that they could be used as reference points for merging the photographs into an accurate photo mosaic.

    Around the station and to the NE it was easy to identify features from the photographs with confidence. To the west of the station the topography and features of the azorella wallows had changed significant and it was not possible to identify features with confidence.

  19. D

    GIS Controller Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Controller Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/gis-controller-market-report
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Controller Market Outlook



    The GIS Controller market size was valued at $8.3 billion in 2023 and is projected to reach $15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.2% during the forecast period. This significant growth factor can be attributed primarily to increasing urbanization, the rising need for efficient spatial data management, and technological advancements in geospatial analytics.



    One of the prime growth factors driving the GIS Controller market is the escalating demand for smart city solutions. As urbanization continues to rise globally, governments and municipalities are increasingly investing in smart city initiatives to improve urban planning, public safety, and resource management. GIS controllers play a crucial role in these initiatives by providing accurate spatial data, which is essential for efficient infrastructure development, traffic management, and environmental monitoring. Furthermore, the integration of GIS with other technologies such as IoT and AI is opening new avenues for real-time data analysis and decision-making, further propelling market growth.



    The agriculture sector is another significant contributor to the growth of the GIS Controller market. Precision farming techniques that leverage GIS technology are gaining traction for their ability to enhance crop yield and optimize resource usage. By providing detailed insights into soil conditions, weather patterns, and crop health, GIS controllers enable farmers to make data-driven decisions, thereby improving operational efficiency and reducing costs. Additionally, government initiatives aimed at promoting sustainable farming practices are further fueling the adoption of GIS technology in the agricultural sector.



    Disaster management is another critical application area where GIS controllers are making a substantial impact. The increasing frequency of natural disasters such as hurricanes, floods, and earthquakes necessitates advanced planning and real-time response capabilities. GIS controllers help in mapping disaster-prone areas, predicting the impact of natural calamities, and coordinating emergency response efforts. This capability is invaluable for minimizing damage and saving lives. The growing focus on disaster preparedness and management is expected to drive the demand for GIS controllers in the coming years.



    Regionally, North America holds a significant share of the GIS Controller market, driven by the high adoption rate of advanced technologies and substantial investments in smart city projects. The Asia Pacific region is expected to witness the highest growth rate, fueled by rapid urbanization, infrastructural development, and increasing government initiatives for digital transformation. Europe also presents substantial growth opportunities due to the rising focus on environmental sustainability and smart transportation systems.



    Component Analysis



    The GIS Controller market is segmented into three primary components: Hardware, Software, and Services. The hardware segment includes devices and equipment necessary for capturing and processing geospatial data, such as GPS units, sensors, and data collection devices. This segment is witnessing steady growth due to the increasing need for advanced and accurate data collection tools. The integration of AI and IoT with GIS hardware is further enhancing the capabilities of these devices, making them indispensable for various applications such as urban planning, agriculture, and disaster management.



    In terms of software, GIS Controllers are equipped with specialized software for data analysis, mapping, and modeling. This segment is experiencing rapid growth due to the increasing demand for sophisticated analytical tools that can handle large datasets and provide real-time insights. Advanced GIS software solutions are being developed to offer more user-friendly interfaces and better integration with other enterprise systems, thereby enhancing their usability and effectiveness across different sectors. The rise of cloud-based GIS software is also contributing to the growth of this segment by offering scalable and cost-effective solutions.



    The services segment comprises consultancy, implementation, and maintenance services essential for the effective deployment and utilization of GIS Controllers. As organizations increasingly adopt GIS technology, the demand for specialized services that can ensure smooth integration and optimal performance is rising. Professional services providers are offering customized solutions to meet the specific needs of different industries

  20. Report and Data from S&T Project 19042: Developing a Collaborative...

    • data.usbr.gov
    Updated Aug 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Bureau of Reclamation (2025). Report and Data from S&T Project 19042: Developing a Collaborative Environment for Sharing Geographic Information Systems (GIS) Data Between Reclamation and Irrigation Districts [Dataset]. https://data.usbr.gov/catalog/7980
    Explore at:
    Dataset updated
    Aug 7, 2025
    Dataset authored and provided by
    United States Bureau of Reclamationhttp://www.usbr.gov/
    Area covered
    Description

    The objective of this research project is to design, develop, and test a pilot collaborative environment between two Irrigation Districts and Reclamation within the Missouri Basin (MB Region). The collaborative environment will utilize ArcGIS Online, ArcGIS Pro, and Field Maps. Through robust testing, the design process, procedural standards, and lessons learned in the implementing stages will be documented and shared with all Regions. This catalog record contains the Final S&T Project Report describing the work done in the project, and two shapefiles with point and line geometry types depicting observation wells and canals obtained from field GPS data collection by Frenchman Cambridge Irrigation District.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-21401

GIS Data Collector Report

Explore at:
ppt, pdf, docAvailable download formats
Dataset updated
Mar 22, 2025
Dataset authored and provided by
Market Report Analytics
License

https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

Discover the booming GIS Data Collector market! This comprehensive analysis reveals a $2.5B market in 2025, projected to reach $4.2B by 2033, fueled by precision agriculture, infrastructure development, and technological advancements. Explore key trends, drivers, restraints, and leading companies shaping this dynamic sector.

Search
Clear search
Close search
Google apps
Main menu