https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Social Media Usage Dataset(Applications) features patterns and activity indicators that 1,000 users use seven major social media platforms, including Facebook, Instagram, and Twitter.
2) Data Utilization (1) Social Media Usage Dataset(Applications) has characteristics that: • This dataset provides different social media activity data for each user, including daily usage time, number of posts, number of likes received, and number of new followers. (2) Social Media Usage Dataset(Applications) can be used to: • Analysis of User Participation by Platform: You can analyze participation and popular trends by platform by comparing usage time and activity for each social media. • Establish marketing strategy: Based on user activity data, it can be used for targeted marketing, content production, and user retention strategies.
How many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
How much time do people spend on social media? As of 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This machine-generated dataset simulates social media engagement data across various metrics, including likes, shares, comments, impressions, sentiment scores, toxicity, and engagement growth. It is designed for analysis and visualization of trends, buzz frequency, public sentiment, and user behavior on digital platforms.
The dataset can be used to:
Identify spikes or drops in engagement
Analyze changes in sentiment over time
Build dashboards for digital trend tracking
Test algorithms for sentiment analysis or trend prediction
http://rdm.uva.nl/en/support/confidential-data.htmlhttp://rdm.uva.nl/en/support/confidential-data.html
This data set belongs to:Beyens, I., Pouwels, J. L., van Driel, I. I., Keijsers, L., & Valkenburg, P. M. (2020). The effect of social media on well-being differs from adolescent to adolescent. Scientific Reports. doi:10.1038/s41598-020-67727-7The design, sampling and analysis plan of the study are available on the Open Science Framework (OSF) at https://osf.io/nhks2.For more information, please contact the authors at i.beyens@uva.nl or info@project-awesome.nl.
More than 100 social media channels and statistics for the National Archives and Records Administration.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset explores how daily digital habits — including social media usage, screen time, and notification exposure — relate to individual productivity, stress, and well-being.
The dataset contains 30,000 real-world-style records simulating behavioral patterns of people with various jobs, social habits, and lifestyle choices. The goal is to understand how different digital behaviors correlate with perceived and actual productivity.
✅ Designed for real-world ML workflows
Includes missing values, noise, and outliers — ideal for practicing data cleaning and preprocessing.
🔗 High correlation between target features
The perceived_productivity_score
and actual_productivity_score
are strongly correlated, making this dataset suitable for experiments in feature selection and multicollinearity.
🛠️ Feature Engineering playground
Use this dataset to practice feature scaling, encoding, binning, interaction terms, and more.
🧪 Perfect for EDA, regression & classification
You can model productivity, stress, or satisfaction based on behavior patterns and digital exposure.
Column Name | Description |
---|---|
age | Age of the individual (18–65 years) |
gender | Gender identity: Male, Female, or Other |
job_type | Employment sector or status (IT, Education, Student, etc.) |
daily_social_media_time | Average daily time spent on social media (hours) |
social_platform_preference | Most-used social platform (Instagram, TikTok, Telegram, etc.) |
number_of_notifications | Number of mobile/social notifications per day |
work_hours_per_day | Average hours worked each day |
perceived_productivity_score | Self-rated productivity score (scale: 0–10) |
actual_productivity_score | Simulated ground-truth productivity score (scale: 0–10) |
stress_level | Current stress level (scale: 1–10) |
sleep_hours | Average hours of sleep per night |
screen_time_before_sleep | Time spent on screens before sleeping (hours) |
breaks_during_work | Number of breaks taken during work hours |
uses_focus_apps | Whether the user uses digital focus apps (True/False) |
has_digital_wellbeing_enabled | Whether Digital Wellbeing is activated (True/False) |
coffee_consumption_per_day | Number of coffee cups consumed per day |
days_feeling_burnout_per_month | Number of burnout days reported per month |
weekly_offline_hours | Total hours spent offline each week (excluding sleep) |
job_satisfaction_score | Satisfaction with job/life responsibilities (scale: 0–10) |
👉 Sample notebook coming soon with data cleaning, visualization, and productivity prediction!
During a 2024 survey, 77 percent of respondents from Nigeria stated that they used social media as a source of news. In comparison, just 23 percent of Japanese respondents said the same. Large portions of social media users around the world admit that they do not trust social platforms either as media sources or as a way to get news, and yet they continue to access such networks on a daily basis.
Social media: trust and consumption
Despite the majority of adults surveyed in each country reporting that they used social networks to keep up to date with news and current affairs, a 2018 study showed that social media is the least trusted news source in the world. Less than 35 percent of adults in Europe considered social networks to be trustworthy in this respect, yet more than 50 percent of adults in Portugal, Poland, Romania, Hungary, Bulgaria, Slovakia and Croatia said that they got their news on social media.
What is clear is that we live in an era where social media is such an enormous part of daily life that consumers will still use it in spite of their doubts or reservations. Concerns about fake news and propaganda on social media have not stopped billions of users accessing their favorite networks on a daily basis.
Most Millennials in the United States use social media for news every day, and younger consumers in European countries are much more likely to use social networks for national political news than their older peers.
Like it or not, reading news on social is fast becoming the norm for younger generations, and this form of news consumption will likely increase further regardless of whether consumers fully trust their chosen network or not.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database is comprised of 951 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 509 males (54%) and 442 females (46%). Their ages ranged from 12 to 16 years (M = 13.69, SD = 0.72). Seven participants did not report their age. The majority were born in Australia (N = 849, 89%). The next most common countries of birth were China (N = 24, 2.5%), the UK (N = 23, 2.4%), and the USA (N = 9, 0.9%). Data were drawn from students at five Australian independent secondary schools. The data contains item responses for the Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. The Social media question asked about frequency of use with the question “How often do you use social media?”. The response options ranged from constantly to once a week or less. Items measuring Fear of Missing Out were included and incorporated the following five questions based on the APS Stress and Wellbeing in Australia Survey (APS, 2015). These were “When I have a good time it is important for me to share the details online; I am afraid that I will miss out on something if I don’t stay connected to my online social networks; I feel worried and uncomfortable when I can’t access my social media accounts; I find it difficult to relax or sleep after spending time on social networking sites; I feel my brain burnout with the constant connectivity of social media. Internal consistency for this measure was α = .81. Self compassion was measured using the 12-item short-form of the Self-Compassion Scale (SCS-SF; Raes et al., 2011). The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels. References: Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4 Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702 Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The hereby presented data are extracted from Meta, Tiktok and Twitter.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
About Dataset This dataset captures the pulse of viral social media trends across Facebook, Instagram and Twitter. It provides insights into the most popular hashtags, content types, and user engagement levels, offering a comprehensive view of how trends unfold across platforms. With regional data and influencer-driven content, this dataset is perfect for:
Trend analysis 🔍 Sentiment modeling 💭 Understanding influencer marketing 📈 Dive in to explore what makes content go viral, the behaviors that drive engagement, and how trends evolve on a global scale! 🌍
https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
Context: This dataset offers insights into the usage patterns of social media apps for 1,000 users across seven popular platforms: Facebook, Instagram, Twitter, Snapchat, TikTok, LinkedIn, and Pinterest. It tracks various metrics such as daily time spent on the app, number of posts made, likes received, and new followers gained.
Dataset Features:
User_ID: Unique identifier for each user. App: The social media platform being used. Daily_Minutes_Spent: Total time a user spends on the app each day, ranging from 5 to 500 minutes. Posts_Per_Day: Number of posts a user creates per day, ranging from 0 to 20. Likes_Per_Day: Total number of likes a user receives on their posts each day, ranging from 0 to 200. Follows_Per_Day: The number of new followers a user gains daily, ranging from 0 to 50. Context & Use Cases: This dataset could be particularly useful for social media analysts, digital marketers, or researchers interested in understanding user engagement trends across different platforms. It provides insights into how much time users spend, how actively they post, and the level of engagement they receive (in terms of likes and followers).
Conclusion & Outcome: Analyzing this dataset could yield several outcomes:
Engagement Patterns: Identifying which platforms have higher engagement in terms of time spent or likes received. Active Users: Determining which users are the most active across various platforms based on the number of posts and followers gained. User Retention: Studying the correlation between time spent and follower growth, providing insight into user retention strategies for different platforms. Overall, the dataset allows for exploration of social media usage trends and helps drive decision-making for marketing strategies, content creation, and platform engagement.
Social Media and Online Usage to Improve the Customer Experience (description updated 3/10/2023)
http://rdm.uva.nl/en/support/confidential-data.htmlhttp://rdm.uva.nl/en/support/confidential-data.html
This data set belongs to:Valkenburg, P. M., Beyens, I., Pouwels, J. L., van Driel, I. I., & Keijsers, L. (2021). Social media use and adolescents' self-esteem: Heading for a person-specific media effects paradigm. Journal of Communication, 71(1), 56-78. https://doi.org/10.1093/joc/jqaa039More information about the study is available on the Open Science Framework (OSF), including the preregistration of the design and sampling plan (https://osf.io/327cx), the preregistration of the hypotheses and analysis plan (https://osf.io/peqa4), and all syntax files (https://osf.io/y3z7d).For more information, please contact the authors at p.m.valkenburg@uva.nl or info@project-awesome.nl.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains a labeled collection of approximately 50,000 social media posts in various Arabic dialects. Each post has been manually annotated with sentiment labels, providing a rich resource for natural language processing and sentiment analysis research.
UM6P College of Computing
The dataset is provided in a CSV format with the following columns:
- Post_ID
: Integer
- Text
: String
- Sentiment
: String (Positive, Negative, Neutral)
This dataset is ideal for tasks such as: - Training sentiment analysis models - Studying sentiment trends in Arabic social media - Exploring the linguistic characteristics of Arabic dialects - Benchmarking sentiment analysis tools
Post_ID | Text | Sentiment |
---|---|---|
1 | "هذا المنتج رائع جدًا وأحببته كثيرًا" | Positive |
2 | "لم يعجبني هذا الفيلم، كان مملًا جدًا" | Negative |
3 | "الطقس اليوم عادي، لا يوجد شيء مميز" | Neutral |
Please refer to the dataset license included in the dataset files for information on usage rights and restrictions.
An open access NLP dataset for Arabic dialects: data collection, labeling, and model construction, Elmehdi Boujou, Hamza Chataoui, Abdellah El Mekki, Saad Benjelloun, Ikram Chairi and Ismail Berrada MENACIS 2020 conference, In press.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Social media platforms have become integral tools in the conduct of foreign policy for many nations, including India. This dataset serves as a resource for analyzing ‘Social Media and India’s Foreign Policy: The Case Study of ‘X’ Diplomacy during the Covid-19 Pandemic.’ The data were collected through a web-based questionnaire distributed primarily to people aged 18 – 61 and above in India. A total of 171 valid data were collected from 17 states offering extensive geographic coverage and stored in Mendeley. The 15 contributor states are Goa, Maharashtra, Tamil Nadu, Gujarat, Delhi, Assam, Haryana, Jammu and Kashmir, Karnataka, Kerala, Punjab, Rajasthan, Tripura, Uttar Pradesh and West Bengal. It encompasses diverse question formats, including single-choice, multiple-choice, quizzes, and open-ended. The study underscores the opportunities and challenges of employing 'X' diplomacy in India's foreign policy. Thus, there were two hypotheses. First, India's effective use of 'X' diplomacy positively impacts public perception of India's foreign policy effectiveness. Second, India's adept use of 'X' diplomacy during the COVID-19 pandemic enhances its ability to manage and respond to the crisis effectively. This data shows public perception of the effective use of social media by the Government of India, particularly in the crisis situation. Data also highlight the significant change in India’s narrative through its ‘X’ diplomacy, effectively setting the narratives, public perceptions, and diplomatic strategies. This data can be fully utilized in the study of the significance of social media in India’s foreign policy, the role of social media like ‘X’ in the making of India’s foreign policy, how effective social media like ‘X’ was during the Covid-19 pandemic and how Indian government utilized social media like ‘X’ to delivered messages and to set the narrative in the international politics.
During a January 2024 global survey among marketers, nearly 60 percent reported plans to increase their organic use of YouTube for marketing purposes in the following 12 months. LinkedIn and Instagram followed, respectively mentioned by 57 and 56 percent of the respondents intending to use them more. According to the same survey, Facebook was the most important social media platform for marketers worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is structured as a graph, where nodes represent users and edges capture their interactions, including tweets, retweets, replies, and mentions. Each node provides detailed user attributes, such as unique ID, follower and following counts, and verification status, offering insights into each user's identity, role, and influence in the mental health discourse. The edges illustrate user interactions, highlighting engagement patterns and types of content that drive responses, such as tweet impressions. This interconnected structure enables sentiment analysis and public reaction studies, allowing researchers to explore engagement trends and identify the mental health topics that resonate most with users.
The dataset consists of three files: 1. Edges Data: Contains graph data essential for social network analysis, including fields for UserID (Source), UserID (Destination), Post/Tweet ID, and Date of Relationship. This file enables analysis of user connections without including tweet content, maintaining compliance with Twitter/X’s data-sharing policies. 2. Nodes Data: Offers user-specific details relevant to network analysis, including UserID, Account Creation Date, Follower and Following counts, Verified Status, and Date Joined Twitter. This file allows researchers to examine user behavior (e.g., identifying influential users or spam-like accounts) without direct reference to tweet content. 3. Twitter/X Content Data: This file contains only the raw tweet text as a single-column dataset, without associated user identifiers or metadata. By isolating the text, we ensure alignment with anonymization standards observed in similar published datasets, safeguarding user privacy in compliance with Twitter/X's data guidelines. This content is crucial for addressing the research focus on mental health discourse in social media. (References to prior Data in Brief publications involving Twitter/X data informed the dataset's structure.)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The report provides a snapshot of the social media usage trends amongst online Canadian adults based on an online survey of 1500 participants. Canada continues to be one of the most connected countries in the world. An overwhelming majority of online Canadian adults (94%) have an account on at least one social media platform. However, the 2022 survey results show that the COVID-19 pandemic has ushered in some changes in how and where Canadians are spending their time on social media. Dominant platforms such as Facebook, messaging apps and YouTube are still on top but are losing ground to newer platforms such as TikTok and more niche platforms such as Reddit and Twitch.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Social Media Usage Dataset(Applications) features patterns and activity indicators that 1,000 users use seven major social media platforms, including Facebook, Instagram, and Twitter.
2) Data Utilization (1) Social Media Usage Dataset(Applications) has characteristics that: • This dataset provides different social media activity data for each user, including daily usage time, number of posts, number of likes received, and number of new followers. (2) Social Media Usage Dataset(Applications) can be used to: • Analysis of User Participation by Platform: You can analyze participation and popular trends by platform by comparing usage time and activity for each social media. • Establish marketing strategy: Based on user activity data, it can be used for targeted marketing, content production, and user retention strategies.