Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Description: This dataset contains historical economic data spanning from 1871 to 2024, used in Jaouad Karfali’s research on Economic Cycle Analysis with Numerical Time Cycles. The study aims to improve economic forecasting accuracy through the 9-year cycle model, which demonstrates superior predictive capabilities compared to traditional economic indicators.
Dataset Contents: The dataset includes a comprehensive range of economic indicators used in the research, such as:
USGDP_1871-2024.csv – U.S. Gross Domestic Product (GDP) data. USCPI_cleaned.csv – U.S. Consumer Price Index (CPI), cleaned and processed. USWAGE_1871-2024.csv – U.S. average wages data. EXCHANGEGLOBAL_cleaned.csv – Global exchange rates for the U.S. dollar. EXCHANGEPOUND_cleaned.csv – U.S. dollar to British pound exchange rates. INTERESTRATE_1871-2024.csv – U.S. interest rate data. UNRATE.csv – U.S. unemployment rate statistics. POPTOTUSA647NWDB.csv – U.S. total population data. Significance of the Data: This dataset serves as a foundation for a robust economic analysis of the U.S. economy over multiple decades. It was instrumental in testing the 9-year economic cycle model, which demonstrated an 85% accuracy rate in economic forecasting when compared to traditional models such as ARIMA and VAR.
Applications:
Economic Forecasting: Predicts a 1.5% decline in GDP in 2025, followed by a gradual recovery between 2026-2034. Economic Stability Analysis: Used for comparing forecasts with estimates from institutions like the IMF and World Bank. Academic and Institutional Research: Supports studies in economic cycles and long-term forecasting. Source & Further Information: For more details on the methodology and research findings, refer to the full paper published on SSRN:
https://ssrn.com/author=7429208 https://orcid.org/0009-0002-9626-7289
The U.S. Census Bureau.s economic indicator surveys provide monthly and quarterly data that are timely, reliable, and offer comprehensive measures of the U.S. economy. These surveys produce a variety of statistics covering construction, housing, international trade, retail trade, wholesale trade, services and manufacturing. The survey data provide measures of economic activity that allow analysis of economic performance and inform business investment and policy decisions. Other data included, which are not considered principal economic indicators, are the Quarterly Summary of State & Local Taxes, Quarterly Survey of Public Pensions, and the Manufactured Homes Survey. For information on the reliability and use of the data, including important notes on estimation and sampling variance, seasonal adjustment, measures of sampling variability, and other information pertinent to the economic indicators, visit the individual programs' webpages - http://www.census.gov/cgi-bin/briefroom/BriefRm.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Macroeconomic data is an important source for both institutions and companies to have a rough sense of what government's policies and economy will head to. This dataset can help macroeconomic and fundamental analysts to do research on Chinese market or macroeconomics. Quantitative researchers can also use this dataset as a reference to assist them making better strategies. The SHIBOR rate of different maturities is recorded at daily frequency. Users can construct the yield curve for economic research. Quantitative researchers can use it to see how SHIBOR influences the overall Chinese stock & fixed income market and etc. Many Chinese Indices are also very important in conducting research about Chinese market & economy. These data are also at daily frequency. Other macroeconomic data are recorded in monthly frequency and thus can be used to conduct broader area of economic and financial research and etc.
Local authority and Local Enterprise Partnership data sets for key economic data by rural and urban breakdown.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">211 KB</span></p>
<p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
<details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
Request an accessible format.
If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:defra.helpline@defra.gov.uk" target="_blank" class="govuk-link">defra.helpline@defra.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data relates to the paper that analyses the determinants or factors that best explain student research skills and success in the honours research report module during the COVID-19 pandemic in 2021. The data used have been gathered through an online survey created on the Qualtrics software package. The research questions were developed from demographic factors and subject knowledge including assignments to supervisor influence and other factors in terms of experience or belonging that played a role (see anonymous link at https://unisa.qualtrics.com/jfe/form/SV_86OZZOdyA5sBurY. An SMS was sent to all students of the 2021 module group to make them aware of the survey. They were under no obligation to complete it and all information was regarded as anonymous. We received 39 responses. The raw data from the survey was processed through the SPSS statistical, software package. The data file contains the demographics, frequencies, descriptives, and open questions processed.
The study reported in this paper employed the mixed methods approach comprising a quantitative and qualitative analysis. The quantitative and econometric analysis of the dependent variable, namely, the final marks for the research report and the independent variables that explain it. The results show significance in terms of the assignments and existing knowledge marks in terms of their bachelor's average mark. We extended the analysis to a qualitative and quantitative survey, which indicated that the mean statistical feedback was above average and therefore strongly agreed/agreed except for library use by the student. Students, therefore, need more guidance in terms of library use and the open questions showed a need for a research methods course in the future. Furthermore, supervision tends to be a significant determinant in all cases. It is also here where supervisors can use social media instruments such as WhatsApp and Facebook to inform students further. This study contributes as the first to investigate the preparation and research skills of students for master's and doctoral studies during the COVID-19 pandemic in an online environment.
505 Economics is on a mission to make academic economics accessible. We've developed the first monthly sub-national GDP data for EU and UK regions from January 2015 onwards.
Our GDP dataset uses luminosity as a proxy for GDP. The brighter a place, the more economic activity that place tends to have.
We produce the data using high-resolution night time satellite imagery and Artificial Intelligence.
This builds on our academic research at the London School of Economics, and we're producing the dataset in collaboration with the European Space Agency BIC UK.
We have published peer-reviewed academic articles on the usage of luminosity as an accurate proxy for GDP.
Key features: - Frequent: Data is provided every month from January 2015. This is more frequent than quarterly official datasets. - Timely: Data is provided with a three week lag (i.e. the data for January 2021 was published at the end of February 2021). This is substantially quicker than the 3-6 month lag of official datasets. - Accurate: Our dataset uses Deep Learning to maximise accuracy (RMSE 1.2%).
The dataset can be used by:
We have created this dataset for the UK, Switzerland and 28 EU Countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file compiles the different datasets used and analysis made in the paper "Visual Continuous Time Preferences". Both RStudio and Stata were used for the analysis. The first was used for descriptive statistics and graphs, the second for regressions. We join the datasets for both analysis.
"Analysis VCTP - RStudio.R" is the RStudio analysis. "Analysis VCTP - Stata.do" is the Stata analysis.
The RStudio datasets are: "data_Seville.xlsx" is the dataset of observations. "FormularioEng.xlsx" is the dataset of control variables.
The Stata datasets are: "data_Seville_Stata.dta" is the dataset of observations. "FormularioEng.dta" is the dataset of control variables
Additionally, the experimental instructions of the six experimental conditions are also available: "Hypothetical MPL-VCTP.pdf" is the instructions and task for hypothetical payment and MPL answered before VCTP. "Hypothetical VCTP-MPL.pdf" is the instructions and task for hypothetical payment and VCTP answered before MPL. "OneTenth MPL-VCTP.pdf" is the instructions and task for BRIS payment and MPL answered before VCTP. "OneTenth VCTP-MPL.pdf" is the instructions and task for BRIS payment and VCTP answered before MPL. "Real MPL-VCTP.pdf" is the instructions and task for real payment and VCTP answered before MPL. "Real VCTP-MPL.pdf" is the instructions and task for real payment and VCTP answered before MPL.
The 2017 Commodity Flow Survey (CFS) is undertaken through a partnership between the U.S. Census Bureau, U.S. Department of Commerce, and the Research and Innovation Technology Administration, Bureau of Transportation Statistics (BTS), U.S. Department of Transportation. This survey produces data on the movement of goods in the United States. It provides information on commodities shipped, their value, weight, and mode of transportation, as well as the origin and destination of shipments of manufacturing, mining, wholesale, and select retail and services establishments. The data from the CFS are used by public policy analysts and for transportation planning and decision making to access the demand for transportation facilities and services, energy use, and safety risk and environmental concerns. This dataset provides data for the Exports Series.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Canada Trademarks Dataset
18 Journal of Empirical Legal Studies 908 (2021), prepublication draft available at https://papers.ssrn.com/abstract=3782655, published version available at https://onlinelibrary.wiley.com/share/author/CHG3HC6GTFMMRU8UJFRR?target=10.1111/jels.12303
Dataset Selection and Arrangement (c) 2021 Jeremy Sheff
Python and Stata Scripts (c) 2021 Jeremy Sheff
Contains data licensed by Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, the minister responsible for the administration of the Canadian Intellectual Property Office.
This individual-application-level dataset includes records of all applications for registered trademarks in Canada since approximately 1980, and of many preserved applications and registrations dating back to the beginning of Canada’s trademark registry in 1865, totaling over 1.6 million application records. It includes comprehensive bibliographic and lifecycle data; trademark characteristics; goods and services claims; identification of applicants, attorneys, and other interested parties (including address data); detailed prosecution history event data; and data on application, registration, and use claims in countries other than Canada. The dataset has been constructed from public records made available by the Canadian Intellectual Property Office. Both the dataset and the code used to build and analyze it are presented for public use on open-access terms.
Scripts are licensed for reuse subject to the Creative Commons Attribution License 4.0 (CC-BY-4.0), https://creativecommons.org/licenses/by/4.0/. Data files are licensed for reuse subject to the Creative Commons Attribution License 4.0 (CC-BY-4.0), https://creativecommons.org/licenses/by/4.0/, and also subject to additional conditions imposed by the Canadian Intellectual Property Office (CIPO) as described below.
Terms of Use:
As per the terms of use of CIPO's government data, all users are required to include the above-quoted attribution to CIPO in any reproductions of this dataset. They are further required to cease using any record within the datasets that has been modified by CIPO and for which CIPO has issued a notice on its website in accordance with its Terms and Conditions, and to use the datasets in compliance with applicable laws. These requirements are in addition to the terms of the CC-BY-4.0 license, which require attribution to the author (among other terms). For further information on CIPO’s terms and conditions, see https://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/wr01935.html. For further information on the CC-BY-4.0 license, see https://creativecommons.org/licenses/by/4.0/.
The following attribution statement, if included by users of this dataset, is satisfactory to the author, but the author makes no representations as to whether it may be satisfactory to CIPO:
The Canada Trademarks Dataset is (c) 2021 by Jeremy Sheff and licensed under a CC-BY-4.0 license, subject to additional terms imposed by the Canadian Intellectual Property Office. It contains data licensed by Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, the minister responsible for the administration of the Canadian Intellectual Property Office. For further information, see https://creativecommons.org/licenses/by/4.0/ and https://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/wr01935.html.
Details of Repository Contents:
This repository includes a number of .zip archives which expand into folders containing either scripts for construction and analysis of the dataset or data files comprising the dataset itself. These folders are as follows:
If users wish to construct rather than download the datafiles, the first script that they should run is /py/sftp_secure.py. This script will prompt the user to enter their IP Horizons SFTP credentials; these can be obtained by registering with CIPO at https://ised-isde.survey-sondage.ca/f/s.aspx?s=59f3b3a4-2fb5-49a4-b064-645a5e3a752d&lang=EN&ds=SFTP. The script will also prompt the user to identify a target directory for the data downloads. Because the data archives are quite large, users are advised to create a target directory in advance and ensure they have at least 70GB of available storage on the media in which the directory is located.
The sftp_secure.py script will generate a new subfolder in the user’s target directory called /XML_raw. Users should note the full path of this directory, which they will be prompted to provide when running the remaining python scripts. Each of the remaining scripts, the filenames of which begin with “iterparse”, corresponds to one of the data files in the dataset, as indicated in the script’s filename. After running one of these scripts, the user’s target directory should include a /csv subdirectory containing the data file corresponding to the script; after running all the iterparse scripts the user’s /csv directory should be identical to the /csv directory in this repository. Users are invited to modify these scripts as they see fit, subject to the terms of the licenses set forth above.
With respect to the Stata do-files, only one of them is relevant to construction of the dataset itself. This is /do/CA_TM_csv_cleanup.do, which converts the .csv versions of the data files to .dta format, and uses Stata’s labeling functionality to reduce the size of the resulting files while preserving information. The other do-files generate the analyses and graphics presented in the paper describing the dataset (Jeremy N. Sheff, The Canada Trademarks Dataset, 18 J. Empirical Leg. Studies (forthcoming 2021)), available at https://papers.ssrn.com/abstract=3782655). These do-files are also licensed for reuse subject to the terms of the CC-BY-4.0 license, and users are invited to adapt the scripts to their needs.
The python and Stata scripts included in this repository are separately maintained and updated on Github at https://github.com/jnsheff/CanadaTM.
This repository also includes a copy of the current version of CIPO's data dictionary for its historical XML trademarks archive as of the date of construction of this dataset.
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
The Convention on Biological Diversity (CBD) is one of the global conventions on environmental conservation that came out of the 1992 UN Conference on Environment and Development in Rio de Janeiro, Brazil. By signing and ratifying the CBD, countries have agreed to support its goals and aims. The three main objectives of the CBD are the conservation of biological diversity, the sustainable use of its components, and the fair and equitable sharing of the benefits arising out of the utilisation of genetic resources. To achieve these objectives, the CBD includes 42 articles, each dealing with specific aspects of biodiversity conservation, sustainable use and equitable benefit sharing.Available onlineCall Number: [EL]Physical Description: 4 Pages
This dataset includes economic statistics on inflation, prices, unemployment, and pay & benefits provided by the Bureau of Labor Statistics (BLS)
Update frequency: Monthly Dataset source: U.S. Bureau of Labor Statistics Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset. See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/bls-public-data/bureau-of-labor-statistics
Use of transportation services by industry
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
ExioML is the first ML-ready benchmark dataset in eco-economic research, designed for global sectoral sustainability analysis. It addresses significant research gaps by leveraging the high-quality, open-source EE-MRIO dataset ExioBase 3.8.2. ExioML covers 163 sectors across 49 regions from 1995 to 2022, overcoming data inaccessibility issues. The dataset includes both factor accounting in tabular format and footprint networks in graph structure.
We demonstrate a GHG emission regression task using a factor accounting table, comparing the performance of shallow and deep models. The results show a low Mean Squared Error (MSE), quantifying sectoral GHG emissions in terms of value-added, employment, and energy consumption, validating the dataset's usability. The footprint network in ExioML, inherent in the multi-dimensional MRIO framework, enables tracking resource flow between international sectors.
ExioML offers promising research opportunities, such as predicting embodied emissions through international trade, estimating regional sustainability transitions, and analyzing the topological changes in global trading networks over time. It reduces barriers and intensive data pre-processing for ML researchers, facilitates the integration of ML and eco-economic research, and provides new perspectives for sound climate policy and global sustainable development.
ExioML supports graph and tabular structure learning algorithms through the Footprint Network and Factor Accounting table. The dataset includes the following factors in PxP and IxI:
The Factor Accounting table shares common features with the Footprint Network and summarizes the total heterogeneous characteristics of various sectors.
The Footprint Network models the high-dimensional global trading network, capturing its economic, social, and environmental impacts. This network is structured as a directed graph, where directionality represents sectoral input-output relationships, delineating sectors by their roles as sources (exporting) and targets (importing). The basic element in the ExioML Footprint Network is international trade across different sectors with features such as value-added, emission amount, and energy input. The Footprint Network helps identify critical sectors and paths for sustainability management and optimization. The Footprint Network is hosted on Zenodo.
The ExioML development toolkit in Python and the regression model used for validation are available on the GitHub repository: https://github.com/YVNMINC/ExioML. The complete ExioML dataset is hosted by Zenodo: https://zenodo.org/records/10604610.
More details about the dataset are available in our paper: ExioML: Eco-economic dataset for Machine Learning in Global Sectoral Sustainability, accepted by the ICLR 2024 Climate Change AI workshop: https://arxiv.org/abs/2406.09046.
@inproceedings{guo2024exioml,
title={ExioML: Eco-economic dataset for Machine Learning in Global Sectoral Sustainability},
author={Yanming, Guo and Jin, Ma},
booktitle={ICLR 2024 Workshop on Tackling Climate Change with Machine Learning},
year={2024}
}
Stadler, Konstantin, et al. "EXIOBASE 3." Zenodo. Retrieved March 22 (2021): 2023.
The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
The "Brazilian Payment Methods" dataset provides comprehensive monthly statistics on payment transactions in Brazil in its various forms, sourced from the Banco Central do Brasil (Banco Central do Brasil). This dataset is invaluable for researchers, analysts and policymakers interested in understanding the dynamics of payment methods in Brazil's financial ecosystem.
It is possible to follow the evolution of different payment methods over time, such as the rise of PIX in contrast to the decline of methods such as DOC. This allows for a detailed analysis of how the adoption and use of different payment instruments has changed over the years.
Main features:
Period: The dataset covers monthly data starting from January 2016. Data sources: All data comes directly from the Central Bank of Brazil, ensuring high accuracy and reliability. Payment methods included: PIX: Instant payments. TED (Electronic Transfer Available): High value transfers. TEC (Electronic Credit Transfer): Commonly used to pay salaries DOC (Documentary Credit Order): Interbank transfers. Check: Paper payment method. Boleto: Boletos issued by the bank. Metrics: The dataset includes the quantity and total value of transactions for each payment method. Columns:
YearMonth: The reference month in YYYYMM format. quantityPix: Number of PIX transactions. valuePix: Total value of PIX transactions. quantityTED: The number of TED transactions. valueTED: The total value of TED transactions. quantityTEC: The number of TEC transactions. valueTEC: The total value of TEC transactions. quantityBankCheck: The number of check transactions. valueBankCheck: The total value of check transactions. quantityBrazilianBoletoPayment: Number of boleto transactions. valueBrazilianBoletoPayment: The total value of the boleto transactions. quantityDOC: The number of DOC transactions. valueDOC: The total value of DOC transactions.
This dataset can be used for a variety of analyses, including but not limited to:
Trend analysis: Track the growth or decline in the use of different payment methods over time. Economic Research: Study the impact of economic events on payment behavior. Financial Planning: Assistance in decision-making for financial institutions and companies. Policy making: Inform policy decisions regarding the regulation and promotion of payment methods. Data collection:
Data is collected and updated monthly, ensuring that users have access to the most current information. The script used to collect and update data was designed to be executed automatically, fetching the most recent data from the Central Bank of Brazil API.
Column Names Translation:
The original column names from the Central Bank of Brazil's API have been translated into English where possible. For instance:
AnoMes has been translated to YearMonth
quantidadePix has been translated to quantityPix
valorPix has been translated to valuePix
quantidadeTED has been translated to quantityTED
valorTED has been translated to valueTED
quantidadeTEC has been translated to quantityTEC
valorTEC has been translated to valueTEC
quantidadeCheque has been translated to quantityBankCheck
valorCheque has been translated to valueBankCheck
quantidadeBoleto has been translated to quantityBrazilianBoletoPayment
valorBoleto has been translated to valueBrazilianBoletoPayment
quantidadeDOC has been translated to quantityDOC
valorDOC has been translated to valueDOC
Thanks:
We thank the Central Bank of Brazil for providing open access to this valuable data. For more details, visit Central Bank of Brazil – Open Data.
License:
This dataset is licensed under the Open Data Commons Open Database License (ODbL). You are free to share, modify and use the data, as long as you attribute the source.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 126 series, with data for years 1976 - 1984 (not all combinations necessarily have data for all years), and is no longer being released. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada), Economic use groups (7 items: Canada, total; Durable goods; Non-durable goods; Machinery and equipment; ...), Manufacturers' opinions (18 items: Expected production, higher; Expected production, lower; Expected production, about the same; New orders level, rising; ...).
In response to user demand, the Office for National Statistics (ONS) has undertaken a feasibility study to explore potential ways that the sharing economy could be measured and has outlined action points for further work required in this area. This report summarises work undertaken by ONS so far and considers the use of a survey, administrative data and big data to collect information on the sharing economy.
This dataset contains all the inputs used and output produced from the modified GEOPHIRES for the economic analysis of base case hybrid GDHC system, improved hybrid GDHC system with heat pump and for hot water GDHC. Software required: Microsoft Notepad, Microsoft Excel and GEOPHIRES modified source code
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Description: This dataset contains historical economic data spanning from 1871 to 2024, used in Jaouad Karfali’s research on Economic Cycle Analysis with Numerical Time Cycles. The study aims to improve economic forecasting accuracy through the 9-year cycle model, which demonstrates superior predictive capabilities compared to traditional economic indicators.
Dataset Contents: The dataset includes a comprehensive range of economic indicators used in the research, such as:
USGDP_1871-2024.csv – U.S. Gross Domestic Product (GDP) data. USCPI_cleaned.csv – U.S. Consumer Price Index (CPI), cleaned and processed. USWAGE_1871-2024.csv – U.S. average wages data. EXCHANGEGLOBAL_cleaned.csv – Global exchange rates for the U.S. dollar. EXCHANGEPOUND_cleaned.csv – U.S. dollar to British pound exchange rates. INTERESTRATE_1871-2024.csv – U.S. interest rate data. UNRATE.csv – U.S. unemployment rate statistics. POPTOTUSA647NWDB.csv – U.S. total population data. Significance of the Data: This dataset serves as a foundation for a robust economic analysis of the U.S. economy over multiple decades. It was instrumental in testing the 9-year economic cycle model, which demonstrated an 85% accuracy rate in economic forecasting when compared to traditional models such as ARIMA and VAR.
Applications:
Economic Forecasting: Predicts a 1.5% decline in GDP in 2025, followed by a gradual recovery between 2026-2034. Economic Stability Analysis: Used for comparing forecasts with estimates from institutions like the IMF and World Bank. Academic and Institutional Research: Supports studies in economic cycles and long-term forecasting. Source & Further Information: For more details on the methodology and research findings, refer to the full paper published on SSRN:
https://ssrn.com/author=7429208 https://orcid.org/0009-0002-9626-7289