100+ datasets found
  1. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  2. d

    Data from: Data Mining at NASA: From Theory to Applications

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining at NASA: From Theory to Applications [Dataset]. https://catalog.data.gov/dataset/data-mining-at-nasa-from-theory-to-applications
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    Dashlink
    Description

    NASA has some of the largest and most complex data sources in the world, with data sources ranging from the earth sciences, space sciences, and massive distributed engineering data sets from commercial aircraft and spacecraft. This talk will discuss some of the issues and algorithms developed to analyze and discover patterns in these data sets. We will also provide an overview of a large research program in Integrated Vehicle Health Management. The goal of this program is to develop advanced technologies to automatically detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. A case study will be presented on a recent data mining analysis performed to support the Flight Readiness Review of the Space Shuttle Mission STS-119.

  3. Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xin Qiao; Hong Jiao (2023). Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf [Dataset]. http://doi.org/10.3389/fpsyg.2018.02231.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Xin Qiao; Hong Jiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.

  4. G

    Data Mining Tools Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Mining Tools Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-mining-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market Outlook




    According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.




    One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.




    Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.




    The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.




    From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.





    Component Analysis




    The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro

  5. Data Mining Tools Market Size, Share, Growth, Forecast, By Component...

    • verifiedmarketresearch.com
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Data Mining Tools Market Size, Share, Growth, Forecast, By Component (Software, Services), By Deployment Mode (On-Premise, Cloud-Based), By Function (Data Cleaning, Data Integration, Data Transformation, Data Visualization), By Application (Marketing, Fraud Detection & Risk Management, Cybersecurity, Customer Relationship Management (CRM)) [Dataset]. https://www.verifiedmarketresearch.com/product/data-mining-tools-market/
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market size was valued at USD 915.42 Million in 2024 and is projected to reach USD 2171.21 Million by 2032, growing at a CAGR of 11.40% from 2026 to 2032.• Big Data Explosion: Exponential growth in data generation from IoT devices, social media, mobile applications, and digital transactions is creating massive datasets requiring advanced mining tools for analysis. Organizations need sophisticated solutions to extract meaningful insights from structured and unstructured data sources for competitive advantage.• Digital Transformation Initiatives: Accelerating digital transformation across industries is driving demand for data mining tools that enable data-driven decision making and business intelligence. Companies are investing in analytics capabilities to optimize operations, improve customer experiences, and develop new revenue streams through data monetization strategies.

  6. Data Mining Tools Market - A Global and Regional Analysis

    • bisresearch.com
    csv, pdf
    Updated Nov 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bisresearch (2025). Data Mining Tools Market - A Global and Regional Analysis [Dataset]. https://bisresearch.com/industry-report/global-data-mining-tools-market.html
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Nov 30, 2025
    Dataset authored and provided by
    Bisresearch
    License

    https://bisresearch.com/privacy-policy-cookie-restriction-modehttps://bisresearch.com/privacy-policy-cookie-restriction-mode

    Time period covered
    2023 - 2033
    Area covered
    Worldwide
    Description

    The Data Mining Tools Market is expected to be valued at $1.24 billion in 2024, with an anticipated expansion at a CAGR of 11.63% to reach $3.73 billion by 2034.

  7. Process mining application areas in companies in Russia 2021

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Process mining application areas in companies in Russia 2021 [Dataset]. https://www.statista.com/statistics/1289110/process-mining-application-areas-russia/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 2021 - Oct 2021
    Area covered
    Russia
    Description

    Nearly two thirds of surveyed top managers of large companies operating in Russia viewed process mining as useful for purchasing, in 2021. Furthermore, over ** percent of respondents saw the technology's potential in improving the customer journey map and IT processes.

  8. Survey Data - Entrepreneurs Data Mining

    • kaggle.com
    zip
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lay Christian (2024). Survey Data - Entrepreneurs Data Mining [Dataset]. https://www.kaggle.com/datasets/laychristian/survey-data-entrepreneurs-data-mining
    Explore at:
    zip(38815 bytes)Available download formats
    Dataset updated
    Nov 21, 2024
    Authors
    Lay Christian
    Description

    Title: Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics Authors: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian Conference: The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering https://www.iceccme.com/home

    This dataset was created to support research focused on understanding the factors influencing entrepreneurs’ adoption of data mining techniques for business analytics. The dataset contains carefully curated data points that reflect entrepreneurial behaviors, decision-making criteria, and the role of data mining in enhancing business insights.

    Researchers and practitioners can leverage this dataset to explore patterns, conduct statistical analyses, and build predictive models to gain a deeper understanding of entrepreneurial adoption of data mining.

    Intended Use: This dataset is designed for research and academic purposes, especially in the fields of business analytics, entrepreneurship, and data mining. It is suitable for conducting exploratory data analysis, hypothesis testing, and model development.

    Citation: If you use this dataset in your research or publication, please cite the paper presented at the ICECCME 2024 conference using the following format: Edward Matthew Dominica, Feylin Wijaya, Andrew Giovanni Winoto, Christian. Identifying Factors that Affect Entrepreneurs’ Use of Data Mining for Analytics. The 4th International Conference on Electrical, Computer, Communications, and Mechatronics Engineering (2024).

  9. Data from: Peer-to-Peer Data Mining, Privacy Issues, and Games

    • data.nasa.gov
    • s.cnmilf.com
    • +2more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Peer-to-Peer Data Mining, Privacy Issues, and Games [Dataset]. https://data.nasa.gov/dataset/peer-to-peer-data-mining-privacy-issues-and-games
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Peer-to-Peer (P2P) networks are gaining increasing popularity in many distributed applications such as file-sharing, network storage, web caching, sear- ching and indexing of relevant documents and P2P network-threat analysis. Many of these applications require scalable analysis of data over a P2P network. This paper starts by offering a brief overview of distributed data mining applications and algorithms for P2P environments. Next it discusses some of the privacy concerns with P2P data mining and points out the problems of existing privacy-preserving multi-party data mining techniques. It further points out that most of the nice assumptions of these existing privacy preserving techniques fall apart in real-life applications of privacy-preserving distributed data mining (PPDM). The paper offers a more realistic formulation of the PPDM problem as a multi-party game and points out some recent results.

  10. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  11. w

    Global Data Mining and Modeling Market Research Report: By Application...

    • wiseguyreports.com
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Data Mining and Modeling Market Research Report: By Application (Fraud Detection, Customer Segmentation, Risk Management, Market Basket Analysis), By Deployment Model (Cloud, On-Premises, Hybrid), By Technique (Predictive Analytics, Descriptive Analytics, Prescriptive Analytics, Text Mining), By End Use (Retail, Telecommunications, Banking and Financial Services, Healthcare) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/data-mining-and-modeling-market
    Explore at:
    Dataset updated
    Aug 23, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Aug 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20247.87(USD Billion)
    MARKET SIZE 20258.37(USD Billion)
    MARKET SIZE 203515.4(USD Billion)
    SEGMENTS COVEREDApplication, Deployment Model, Technique, End Use, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSGrowing demand for actionable insights, Increasing adoption of AI technologies, Rising need for predictive analytics, Expanding data sources and volume, Regulatory compliance and data privacy concerns
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDInformatica, Tableau, Cloudera, Microsoft, Google, Alteryx, Oracle, SAP, SAS, DataRobot, Dell Technologies, Qlik, Teradata, TIBCO Software, Snowflake, IBM
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased demand for predictive analytics, Growth in big data technologies, Rising need for data-driven decision-making, Adoption of AI and machine learning, Expansion in healthcare data analysis
    COMPOUND ANNUAL GROWTH RATE (CAGR) 6.3% (2025 - 2035)
  12. c

    Global Data Mining Software Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global Data Mining Software Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/data-mining-software-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Data Mining Software market size will be USD XX million in 2025. It will expand at a compound annual growth rate (CAGR) of XX% from 2025 to 2031.

    North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. KEY DRIVERS

    Increasing Focus on Customer Satisfaction to Drive Data Mining Software Market Growth

    In today’s hyper-competitive and digitally connected marketplace, customer satisfaction has emerged as a critical factor for business sustainability and growth. The growing focus on enhancing customer satisfaction is proving to be a significant driver in the expansion of the data mining software market. Organizations are increasingly leveraging data mining tools to sift through vast volumes of customer data—ranging from transactional records and website activity to social media engagement and call center logs—to uncover insights that directly influence customer experience strategies. Data mining software empowers companies to analyze customer behavior patterns, identify dissatisfaction triggers, and predict future preferences. Through techniques such as classification, clustering, and association rule mining, businesses can break down large datasets to understand what customers want, what they are likely to purchase next, and how they feel about the brand. These insights not only help in refining customer service but also in shaping product development, pricing strategies, and promotional campaigns. For instance, Netflix uses data mining to recommend personalized content by analyzing a user's viewing history, ratings, and preferences. This has led to increased user engagement and retention, highlighting how a deep understanding of customer preferences—made possible through data mining—can translate into competitive advantage. Moreover, companies are increasingly using these tools to create highly targeted and customer-specific marketing campaigns. By mining data from e-commerce transactions, browsing behavior, and demographic profiles, brands can tailor their offerings and communications to suit individual customer segments. For Instance Amazon continuously mines customer purchasing and browsing data to deliver personalized product recommendations, tailored promotions, and timely follow-ups. This not only enhances customer satisfaction but also significantly boosts conversion rates and average order value. According to a report by McKinsey, personalization can deliver five to eight times the ROI on marketing spend and lift sales by 10% or more—a powerful incentive for companies to adopt data mining software as part of their customer experience toolkit. (Source: https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/personalizing-at-scale#/) The utility of data mining tools extends beyond e-commerce and streaming platforms. In the banking and financial services industry, for example, institutions use data mining to analyze customer feedback, call center transcripts, and usage data to detect pain points and improve service delivery. Bank of America, for instance, utilizes data mining and predictive analytics to monitor customer interactions and provide proactive service suggestions or fraud alerts, significantly improving user satisfaction and trust. (Source: https://futuredigitalfinance.wbresearch.com/blog/bank-of-americas-erica-client-interactions-future-ai-in-banking) Similarly, telecom companies like Vodafone use data mining to understand customer churn behavior and implement retention strategies based on insights drawn from service usage patterns and complaint histories. In addition to p...

  13. Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open...

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sven Van Poucke; Zhongheng Zhang; Martin Schmitz; Milan Vukicevic; Margot Vander Laenen; Leo Anthony Celi; Cathy De Deyne (2023). Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform [Dataset]. http://doi.org/10.1371/journal.pone.0145791
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Sven Van Poucke; Zhongheng Zhang; Martin Schmitz; Milan Vukicevic; Margot Vander Laenen; Leo Anthony Celi; Cathy De Deyne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner’s Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.

  14. d

    Distributed Data Mining in Peer-to-Peer Networks

    • catalog.data.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Distributed Data Mining in Peer-to-Peer Networks [Dataset]. https://catalog.data.gov/dataset/distributed-data-mining-in-peer-to-peer-networks
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Peer-to-peer (P2P) networks are gaining popularity in many applications such as file sharing, e-commerce, and social networking, many of which deal with rich, distributed data sources that can benefit from data mining. P2P networks are, in fact,well-suited to distributed data mining (DDM), which deals with the problem of data analysis in environments with distributed data,computing nodes,and users. This article offers an overview of DDM applications and algorithms for P2P environments,focusing particularly on local algorithms that perform data analysis by using computing primitives with limited communication overhead. The authors describe both exact and approximate local P2P data mining algorithms that work in a decentralized and communication-efficient manner.

  15. r

    International Journal of Engineering and Advanced Technology FAQ -...

    • researchhelpdesk.org
    Updated May 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology FAQ - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/faq/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    May 28, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology FAQ - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level agreements (drafting,

  16. f

    Data from: Historical Data Mining Deep Dive into Machine Learning-Aided 2D...

    • acs.figshare.com
    • figshare.com
    xlsx
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krittapong Deshsorn; Panwad Chavalekvirat; Somrudee Deepaisarn; Ho-Chiao Chuang; Pawin Iamprasertkun (2025). Historical Data Mining Deep Dive into Machine Learning-Aided 2D Materials Research in Electrochemical Applications [Dataset]. http://doi.org/10.1021/acsmaterialsau.5c00030.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset provided by
    ACS Publications
    Authors
    Krittapong Deshsorn; Panwad Chavalekvirat; Somrudee Deepaisarn; Ho-Chiao Chuang; Pawin Iamprasertkun
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Machine learning transforms the landscape of 2D materials design, particularly in accelerating discovery, optimization, and screening processes. This review has delved into the historical and ongoing integration of machine learning in 2D materials for electrochemical energy applications, using the Knowledge Discovery in Databases (KDD) approach to guide the research through data mining from the Scopus database using analysis of citations, keywords, and trends. The topics will first focus on a “macro” scope, where hundreds of literature reports are computer analyzed for key insights, such as year analysis, publication origin, and word co-occurrence using heat maps and network graphs. Afterward, the focus will be narrowed down into a more specific “micro” scope obtained from the “macro” overview, which is intended to dive deep into machine learning usage. From the gathered insights, this work highlights how machine learning, density functional theory (DFT), and traditional experimentation are jointly advancing the field of materials science. Overall, the resulting review offers a comprehensive analysis, touching on essential applications such as batteries, fuel cells, supercapacitors, and synthesis processes while showcasing machine learning techniques that enhance the identification of critical material properties.

  17. w

    Global Text Analytics Mining Software Market Research Report: By Application...

    • wiseguyreports.com
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Text Analytics Mining Software Market Research Report: By Application (Sentiment Analysis, Predictive Analytics, Data Mining, Natural Language Processing), By Deployment Type (On-Premises, Cloud-Based), By End User (BFSI, Healthcare, Retail, Telecommunications, Education), By Organization Size (Small Enterprises, Medium Enterprises, Large Enterprises) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/text-analytics-mining-software-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.72(USD Billion)
    MARKET SIZE 20253.06(USD Billion)
    MARKET SIZE 203510.0(USD Billion)
    SEGMENTS COVEREDApplication, Deployment Type, End User, Organization Size, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSgrowing demand for data-driven insights, rising adoption of AI technologies, increasing need for customer sentiment analysis, emergence of big data analytics, enhancements in natural language processing
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDRapidMiner, IBM, Clarabridge, Lexalytics, Oracle, LexisNexis, SAP, Microsoft, NLP Logix, TIBCO Software, SAS Institute, Qlik
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESAI-driven sentiment analysis, Advanced multilingual support, Real-time data processing capabilities, Integration with business intelligence tools, Increased demand in healthcare analytics
    COMPOUND ANNUAL GROWTH RATE (CAGR) 12.6% (2025 - 2035)
  18. f

    Data from: EVALUATION OF A PROCESS FOR THE EXPERIMENTAL DEVELOPMENT OF DATA...

    • scielo.figshare.com
    jpeg
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Methanias Colaço Júnior; Rodrigo Fontes Cruz; Luciano Vieira de Araújo; Ana Carla Bliacheriene; Fátima de L. S. Nunes (2023). EVALUATION OF A PROCESS FOR THE EXPERIMENTAL DEVELOPMENT OF DATA MINING, AI AND DATA SCIENCE APPLICATIONS ALIGNED WITH THE STRATEGIC PLANNING [Dataset]. http://doi.org/10.6084/m9.figshare.21744224.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELO journals
    Authors
    Methanias Colaço Júnior; Rodrigo Fontes Cruz; Luciano Vieira de Araújo; Ana Carla Bliacheriene; Fátima de L. S. Nunes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT The Big Data phenomenon has imposed maturity on companies regarding the exploration of their data, as a prerogative to obtain valuable insights into their clients and the power of analysis to guide decision-making processes. Therefore, a general approach that describes how to extract knowledge for the execution of the business strategy needs to be established. The purpose of this research paper is to introduce and evaluate the implementation of a process for the experimental development of Data Mining (DM), AI and Data Science applications aligned with the strategic planning. A case study with the proposed process was conducted in a federal educational institution. The results generated evidence showing that it is possible to integrate a strategic alignment approach, an experimental method, and a methodology for the development of DM applications. Data Mining (DM) and Data Science (DS) applications also present the risks of other Information Systems, and the adoption of strategy-driven and scientific method processes are critical success factors. Moreover, it was possible to conclude that the application of the scientific method was facilitated, besides being an important tool to ensure the quality, reproducibility and transparency of intelligent applications. In conclusion, the process needs to be mapped to foment and guide the strategic alignment.

  19. Distributed Data Mining in Peer-to-Peer Networks - Dataset - NASA Open Data...

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Distributed Data Mining in Peer-to-Peer Networks - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/distributed-data-mining-in-peer-to-peer-networks
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Peer-to-peer (P2P) networks are gaining popularity in many applications such as file sharing, e-commerce, and social networking, many of which deal with rich, distributed data sources that can benefit from data mining. P2P networks are, in fact,well-suited to distributed data mining (DDM), which deals with the problem of data analysis in environments with distributed data,computing nodes,and users. This article offers an overview of DDM applications and algorithms for P2P environments,focusing particularly on local algorithms that perform data analysis by using computing primitives with limited communication overhead. The authors describe both exact and approximate local P2P data mining algorithms that work in a decentralized and communication-efficient manner.

  20. Data Mining in Systems Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Data Mining in Systems Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management

Data Mining in Systems Health Management

Explore at:
12 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 10, 2025
Dataset provided by
Dashlink
Description

This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

Search
Clear search
Close search
Google apps
Main menu