The U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.
The USGS, in cooperation with the U.S. Bureau of Land Management (BLM), created a series of geospatial products using historic aerial imagery and Structure from Motion (SfM) photogrammetry methods. A point cloud dataset (.laz) of the South Cow Mountain Recreational Area was generated from stereo historical aerial imagery acquired in by the BLM in 1977. The aerial imagery was downloaded from the USGS Earth Resources Observation and Science (EROS) Data Center's USGS Single Aerial Frame Photo archive and the point cloud was created using USGS guidelines. Photo alignment, error reduction, and dense point cloud generation followed guidelines documented in Over, J.R., Ritchie, A.C., Kranenburg, C.J., Brown, J.A., Buscombe, D., Noble, T., Sherwood, C.R., Warrick, J.A., and Wernette, P.A., 2021, Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6— Structure from motion workflow documentation: U.S. Geological Survey Open-File Report 2021–1039, 46 p., https://doi.org/10.3133/ofr20211039. Photo-identifiable points, selected as synthetic ground-control points, followed guidelines documented in Sherwood, C.R.; Warrick, J.A.; Hill, A.D.; Ritchie, A.C.; Andrews, B.D., and Plant, N.G., 2018. Rapid, remote assessment of Hurricane Matthew impacts using four-dimensional structure-from-motion photogrammetry https://doi.org/10.2112/JCOASTRES-D-18-00016.1 Additional post-processing of the 1977 dense point cloud, using Iterative Closest Point (ICP) analysis, was used to improve the alignment with the 2015 LiDAR point cloud. The ICP analysis is explained in Low, K.L., 2004. Linear least-squares optimization for point-to-plane ICP surface registration. Chapel Hill, University of North Carolina, 4(10), pp.1-3. http://www.comp.nus.edu.sg/~lowkl/publications/lowk_point-to-plane_icp_techrep.pdf Data were processed using photogrammetry to generate a three-dimensional point cloud that identifies pixels of an object from multiple images taken from various angles and calculates the x, y, and z coordinates of that object/pixel. The point cloud was processed to create a digital surface model of the study area (57.3 cm resolution). Finally, source images were stitched together based on shared pixels and orthogonally adjusted to the digital surface model to create a high resolution (approximately 18.3 cm) orthoimage for the study area.
The National Aerial Photography Program (NAPP) was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of 20,000 feet above mean terrain elevation. The photographs were taken with a 6-inch focal length lens at a scale of 1:40,000. Coverage over the conterminous United States includes both black-and-white (BW) and color infrared (CIR) aerial photographs. Film type and extent of coverage were determined by available funds and operational requirements. The NAPP program, which was operational from 1987 to 2007, consists of more than 1.3 million images. Photographs were acquired on 9-inch film and were centered over quarters of USGS 7.5-minute quadrangles.To view historical imagery availability by county please visit the Historical Availability of Imagery map.To view more NAPP imagery visit the NAPP Historical Imagery Portfolio app.For ordering information please contact the GEO Customer Service Section at geo.sales@usda.gov.
This raster dataset corresponds to the year 1947, with data obtained from the USGS Earth Explorer, an online collection of aerial photography. This image is a mosaic of the following photo frames: 1EJA000010017, 1EJA000010019, 1EJA000010024, 1EJA000010025, 1EJA000010027, 1EJA000010066, 1EJA000010067, 1EJA000010102, 1EJA000010103, 1EJA000010106, 1EJA000020081, 1EJA000020082,Some images were clipped to fit into the Roseville City limit.
Access the Data:
Access the REST Service from https://ags.roseville.ca.us/arcgis/rest/services/PublicServices/. View the data in our Historical Imagery Collection.Add data to ArcMap or ArcPro by clicking on “View Metadata” and selecting “Open in ArcGIS Desktop”.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS, in cooperation with the U.S. Bureau of Land Management (BLM), created a series of geospatial products using historic aerial imagery and Structure from Motion (SfM) photogrammetry methods. A high-resolution orthomosaic of the South Cow Mountain Recreational Area was generated from stereo historical aerial imagery acquired in by the BLM in May of1977. The aerial imagery were downloaded from the USGS Earth Resources Observation and Science (EROS) Data Center's USGS Single Aerial Frame Photo archive and an orthomosaic was created using USGS guidelines. Photo alignment, error reduction, and dense point cloud generation followed guidelines documented in Over, J.R., Ritchie, A.C., Kranenburg, C.J., Brown, J.A., Buscombe, D., Noble, T., Sherwood, C.R., Warrick, J.A., and Wernette, P.A., 2021, Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6— Structure from motion workflow documentation: U.S. Geological Survey Open-File Report 2021–1039, 46 p. ...
Georectified and tonally balanced aerial photographs collected in 1938 by the U.S. Bureau of Reclamation along the floodplain of the Colorado River in Mohave Valley, Arizona, California, and Nevada.
The shoreline of Cape Hatteras, North Carolina, is experiencing long-term coastal erosion. In order to better understand and monitor the changing coastline, historical aerial imagery is used to map shoreline change. For the area of Hatteras Island from Cape Point to Oregon Inlet, fourteen aerial datasets from 1978-2002 were scanned and georeferenced for use in a Geographic Information System (GIS). Shoreline positions (high water line) were digitized from georeferenced imagery. The shoreline vectors were then compiled for use in the Digital Shoreline Analysis System (DSAS) ArcGIS extension in order to generate rates of shoreline change.
This data release publishes datasets within and surrounding the Piney Branch watershed located in the Washington, D.C. metropolitan suburb of Vienna, Virginia. This dataset was utilized in studies that investigated the accuracy and application of geospatial modeling techniques, structure-from-motion (SfM) photogrammetric methods, and digital elevation model (DEM) differencing to assess and quantify geomorphic and anthropogenic landform change. The United States Geological Survey’s (USGS) three-dimensional digital elevation program (3DEP) light detection and ranging (LiDAR) digital terrain models (DTMs) were used together with and as a means for comparison to DTMs created from historical aerial imagery. The creation and usage of both historical and current elevation datasets allows for the mapping of landscape change over time. Such mapping and assessment of geomorphic and anthropogenic change provides critical information for land management, hazard identification, and the management of challenges related to urbanization
The National Aerial Photography Program (NAPP) was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of 20,000 feet above mean terrain elevation. The photographs were taken with a 6-inch focal length lens at a scale of 1:40,000. Coverage over the conterminous United States includes both black-and-white (BW) and color infrared (CIR) aerial photographs. Film type and extent of coverage were determined by available funds and operational requirements. The NAPP program, which was operational from 1987 to 2007, consists of more than 1.3 million images. Photographs were acquired on 9-inch film and were centered over quarters of USGS 7.5-minute quadrangles.To view historical imagery availability by county please visit the Historical Availability of Imagery map.To view more NAPP imagery visit the NAPP Historical Imagery Portfolio app.For ordering information please contact the GEO Customer Service Section at geo.sales@usda.gov.
The USGS, in cooperation with the U.S. Bureau of Land Management (BLM), created a series of geospatial products of the South Cow Mountain Recreational Area, Lake County, California, using historic aerial imagery and structure-from-motion (SfM) photogrammetry methods. Products were generated from stereo historical aerial imagery acquired by the BLM in May of 1977. The aerial imagery were downloaded from the USGS Earth Resources Observation and Science (EROS) Data Center's USGS Single Aerial Frame Photo archive and a was created using USGS guidelines. Data were processed using SfM photogrammetry to generate a three-dimensional point cloud (.laz) that identifies pixels of an object from multiple images taken from various angles and calculates the x, y, and z coordinates of that object/pixel. The point cloud was processed to create a DSM (.tif) representing the continuous surface of the uppermost reflective surface (57.3 cm resolution). Finally, source images were stitched together based on shared pixels and orthogonally adjusted to the DSM to create a high resolution (approximately 18.3 cm) orthoimage (.tif) for the study area. This dataset includes a point cloud, digital surface model (DSM), and orthoimagery, as well as synthetic ground-control points (GCPs) and point clusters used to georeference the datasets. Separate metadata for each product are provided on the ScienceBase page for each child item.
The National Aeronautics and Space Administration (NASA) Aerial Photography data set is a film archive of photographs from the Lyndon B. Johnson Space Center (JSC) in Houston, Texas, and the NASA Ames Research Center in Moffett Field, California. In 1965, the JSC initiated the Earth Resources Aircraft Program and began flying photographic missions for Federal Government agencies and other entities involved in remote sensing experiments. Beginning in 1966, NASA conducted an Earth Observations Program, including Earth surveys using aircraft platforms.
Photographs from a variety of NASA programs provide project-specific coverage
over the United States, Grand Bahama, Jamaica, and Central America at base
scales ranging from 1:16,000 scale to 1:450,000 scale. Film types, scales,
acquisition schedules, flight altitudes, and end products differ, according to
project requirements.
8 aerial photographs were taken along the Little Missouri River in 1966. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlain on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using ArcGIS, or any other geographic information system (GIS) compatible program. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability on flood-plain formation and destruction, Little Missouri River, North Dakota. Geological Society of America Bulletin 121:752-759.
The USGS, in cooperation with the U.S. Bureau of Land Management (BLM), created a series of geospatial products using historic aerial imagery and Structure from Motion (SfM) photogrammetry methods. A high-resolution orthomosaic of the South Cow Mountain Recreational Area was generated from stereo historical aerial imagery acquired in by the BLM in May of 1977. The aerial imagery were downloaded from the USGS Earth Resources Observation and Science (EROS) Data Center's USGS Single Aerial Frame Photo archive and an orthomosaic was created using USGS guidelines. Photo alignment, error reduction, and dense point cloud generation followed guidelines documented in Over, J.R., Ritchie, A.C., Kranenburg, C.J., Brown, J.A., Buscombe, D., Noble, T., Sherwood, C.R., Warrick, J.A., and Wernette, P.A., 2021, Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6— Structure from motion workflow documentation: U.S. Geological Survey Open-File Report 2021–1039, 46 p., https://doi.org/10.3133/ofr20211039. Photo-identifiable points, selected as synthetic ground-control points, followed guidelines documented in Sherwood, C.R.; Warrick, J.A.; Hill, A.D.; Ritchie, A.C.; Andrews, B.D., and Plant, N.G., 2018. Rapid, remote assessment of Hurricane Matthew impacts using four-dimensional structure-from-motion photogrammetry https://doi.org/10.2112/JCOASTRES-D-18-00016.1 Additional post-processing of the 1977 dense point cloud, using Iterative Closest Point (ICP) analysis, was used to improve the alignment with the 2015 LiDAR point cloud. The ICP analysis is explained in Low, K.L., 2004. Linear least-squares optimization for point-to-plane ICP surface registration. Chapel Hill, University of North Carolina, 4(10), pp.1-3. http://www.comp.nus.edu.sg/~lowkl/publications/lowk_point-to-plane_icp_techrep.pdf Data were processed using photogrammetry to generate a three-dimensional point cloud that identifies pixels of an object from multiple images taken from various angles and calculates the x, y, and z coordinates of that object/pixel. The point cloud was processed to create a digital surface model of the study area (57.3 cm resolution). Finally, source images were stitched together based on shared pixels and orthogonally adjusted to the digital surface model to create a high resolution (approximately 18.3 cm) orthoimage for the study area.
The National High Altitude Photography (NHAP) program was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of 40,000 feet above mean terrain elevation. Two different camera systems were used to obtain simultaneous coverage of black-and-white (BW) and color infrared (CIR) aerial photographs over the conterminous United States. The color-infrared photographs were taken with an 8.25-inch focal length lens and are at a scale of 1:58,000. The black-and-white photographs were taken with a 6-inch focal length lens and are at a scale of 1:80,000. The NHAP program, which was operational from 1980 to 1989, consists of approximately 500,000 images. Photographs were acquired on 9-inch film and centered over USGS 7.5-minute quadrangles.To view historical imagery availability by county please visit the Historical Availability of Imagery map.To view more NHAP imagery visit the NHAP Historical Imagery Gallery app.For ordering information please contact the GEO Customer Service Section at geo.sales@usda.gov.
The National High Altitude Photography (NHAP) program, which was operated from 1980 - 1989, was coordinated by the U.S. Geological Survey as an interagency project to eliminate duplicate photography in various Government programs. The aim of the program was to cover the 48 conterminous states of the USA over a 5-year span. In the NHAP program, black-and-white and color-infrared aerial photographs were obtained on 9-inch film from an altitude of 40,000 feet above mean terrain elevation and are centered over USGS 7.5-minute quadrangles. The color-infrared photographs are at a scale of 1:58,000 (1 inch equals about .9 miles) and the black-and-white photographs are at a scale of 1:80,000 (1 inch equals about 1.26 miles).
The National High Altitude Photography (NHAP) program was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of 40,000 feet above mean terrain elevation. Two different camera systems were used to obtain simultaneous coverage of black-and-white (BW) and color infrared (CIR) aerial photographs over the conterminous United States. The color-infrared photographs were taken with an 8.25-inch focal length lens and are at a scale of 1:58,000. The black-and-white photographs were taken with a 6-inch focal length lens and are at a scale of 1:80,000. The NHAP program, which was operational from 1980 to 1989, consists of approximately 500,000 images. Photographs were acquired on 9-inch film and centered over USGS 7.5-minute quadrangles.To view historical imagery availability by county please visit the Historical Availability of Imagery map.To view more NHAP imagery visit the NHAP Historical Imagery Gallery app.For ordering information please contact the GEO Customer Service Section at geo.sales@usda.gov.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The 8 km of shoreline from Punta Higuero to Punta Cadena in Rincón, Puerto Rico is experiencing long-term coastal erosion. This study documents historical shoreline changes at Rincón for the period 1936-2005. Twelve historical shoreline positions were compiled from existing data, new orthophotography, and GPS field surveys.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The data archive contains the aerial photographs and channel delineations used in our analysis. The images have been geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). The separate images for each year can be viewed as a composite along with that year’s channel delineation using a geographic information system (GIS). The 2003 IKONOS satellite imagery is proprietary and, therefore, cannot be served here. The pre1939 shapefile serves as a reference for the original location of the flood plain that formed before the earliest photos were taken in 1939, and is not associated with any aerial images. The channel delineations for all photo years (including 2003) and the delineation of the outer flood-plain boundary are stored as shapefiles. These shapefiles can be manipulated using GIS applications to reproduce the spatial analyses reported in Miller and Friedman (2009). This metadata record is associated with the project landing ...
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map. A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, color infrared, or color near infrared (4-band) with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.
The U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.