The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
USGS Structures from The National Map (TNM) consists of data to include the name, function, location, and other core information and characteristics of selected manmade facilities across all US states and territories. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations. Structures currently included are: School, School:Elementary, School:Middle, School:High, College/University, Technical/Trade School, Ambulance Service, Fire Station/EMS Station, Law Enforcement, Prison/Correctional Facility, Post Office, Hospital/Medical Center, Cabin, Campground, Cemetery, Historic Site/Point of Interest, Picnic Area, Trailhead, Vistor/Information Center, US Capitol, State Capitol, US Supreme Court, State Supreme Court, Court House, Headquarters, Ranger Station, White House, and City/Town Hall. Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. Included is a feature class of preliminary building polygons provided by FEMA, USA Structures. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain structures data in either Esri File Geodatabase or Shapefile formats. For additional information on the structures data model, go to https://www.usgs.gov/ngp-standards-and-specifications/national-map-structures-content.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
This Open Geospatial Consortium (OGC) compliant Web Map Service (WMS) includes a mosaic of historical USGS topographic maps of New Jersey surveyed from 1881 to 1924. This product is to be used for reference purposes only. The original historical paper maps were distorted or damaged to varying degrees due to age and use. During visual testing, it appeared that spatial inaccuracies in the images exceed 200 feet in several locations. The digital product has not been corrected for distortion nor vertical displacement. Consequently, this product does not meet the National Standard for Spatial Data Accuracy (NSSDA). The mosaic was produced by scanning 15 minute (1:62,500 scale) historical USGS topographic paper maps at 600 dpi and saving them as Tagged Image File Format (TIFF) images. The scanned TIFFs have an approximate pixel resolution of 17 feet. The map images were georeferenced to a fishnet in their native coordinate system and then reprojected to NAD83 NJ State Plane coordinates for use in this service. In most client software, the default spatial reference system of the service will be Geographic Coordinates, WGS84. Several other coordinate systems are supported natively by the WMS (see Supplemental Information).
USGS developed The National Map (TNM) Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map viewer allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to http://nationalmap.gov/gnis.html.
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless ...
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
The U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to https://www.usgs.gov/tools/geographic-names-information-system-gnis. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Geographic Names Information System (GNIS) is the Federal and national standard for geographic nomenclature. The U.S. Geological Survey's National Geospatial Program developed the GNIS in support of the U.S. Board on Geographic Names as the official repository of domestic geographic names data, the official vehicle for geographic names use by all departments of the Federal Government, and the source for applying geographic names to Federal electronic and printed products.The GNIS contains information about physical geographic features of many types in the United States, associated areas, and Antarctica, current and historical, but not including roads and highways or cultural features. The database holds the Federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature designations, feature classification, historical and descriptive information.The GNIS Feature ID, Official Feature Name, and Official Feature Location are American National Standards Institute standards as specified in ANSI INCITS 446-2008 (Identifying Attributes for Named Physical and Cultural Geographic Features (Except Roads and Highways) of the United States, Its Territories, Outlying Areas, and Freely Associated Areas, and the Waters of the Same to the Limit of the Twelve-Mile Statutory Zone). The standard is available at the ANSI Web Store.
This data set includes topography and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), located offshore of New York and New Jersey. The data were collected with a multibeam sea floor mapping system on surveys conducted November 23 - December 3, 1996, October 26 - November 11, 1998, and April 6 - 30, 2000. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Hydrographic Service vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 times the water depth (swath width of 100 to 200 m within the survey area). The horizontal resolution of the beam on the sea floor is approximately 10% of the water depth (3-5 meters in the survey region). Vertical resolution is approximately 1 percent of the water depth, or 0.3 m. Maps derived from the mulitbeam observations show sea floor topography, shaded relief, and backscatter intensity (a measure of sea floor texture and roughness) at a spatial resolution of 3 m/pixel. These data have been reprocessed from those presented in Butman and others (2002) (see cross reference) to correct for an error in the software that projected the data on a sphere rather than on the WGS84 ellipsoid, and to stretch the backscatter intensity and shaded relief images to match the Hudson Shelf Valley images. The horizontal error in placement of the data published by Butman and others (2002) was 0 in the northwestern corner of the HARS, and reached about 12 m in the southeastern corner. Further work is needed to match the backscatter intensity for the 1996, 1998, and 2000 surveys.
San Joaquin Valley Subsidence Analysis README. Written: Joel Dudas, 3/12/2017. Amended: Ben Brezing, 4/2/2019. DWR’s Division of Engineering Geodetic Branch received a request in 1/2017 from Jeanine Jones to produce a graphic of historic subsidence in the entirety of the San Joaquin Valley. The task was assigned to the Mapping & Photogrammetry Office and the Geospatial Data Support Section to complete by early February. After reviewing the alternatives, the decision was made to produce contours from the oldest available set of quad maps for which there was reasonable certainty about quality and datum, and to compare that to the most current Valley-wide DEM. For the first requirement, research indicated that the 1950’s vintage quad maps for the Valley were the best alternative. Prior quad map editions are uneven in quality and vintage, and the actual control used for the contour lines was extremely suspect. The 1950’s quads, by contrast, were produced primarily on the basis of 1948-1949 aerial photography, along with control corresponding to that period, and referenced to the National Geodetic Vertical Datum of 1929. For the current set, the most recent Valley-wide dataset that was freely available, in the public _domain, and of reasonable accuracy was the 2005 NextMap SAR acquisition (referenced to NAVD88). The primary bulk of the work focused on digitizing the 1950’s contours. First, all of the necessary quads were downloaded from the online USGS quad source https://ngmdb.usgs.gov/maps/Topoview/viewer/#4/41.13/-107.51. Then the entire staff of the Mapping & Photogrammetry Lab (including both the Mapping Office and GDDS staff) proceeded to digitize the contours. Given the short turnaround time constraint and limited budget, certain shortcuts occurred in contour development. While efforts were made to digitize accurately, speed really was important. Contours were primarily focused only on agricultural and other lowland areas, and so highlands were by and large skipped. The tight details of contours along rivers, levees, and hillsides was skipped and/or simplified. In some cases, only major contours were digitized. The mapping on the source quads itself varied….in a few cases on spot elevations on benchmarks were available in quads. The contour interval sometimes varied, even within the quad sheet itself. In addition, because 8 different people were creating the contours, variability exists in the style and attention to detail. It should be understood that given the purpose of the project (display regional subsidence patterns), that literal and precise development of the historic contour sets leaves some things to be desired. These caveats being said, the linework is reasonably accurate for what it is (particularly given that the contours of that era themselves were mapped at an unknown and varying actual quality). The digitizers tagged the lines with Z values manually entered after linework that corresponded to the mapped elevation contours. Joel Dudas then did what could be called a “rough” QA/QC of the contours. The individual lines were stitched together into a single contour set, and exported to an elevation raster (using TopoToRaster in ArcGIS 10.4). Gross blunders in Z values were corrected. Gaps in the coverage were filled. The elevation grid was then adjusted to NAVD88 using a single adjustment for the entire coverage area (2.5’, which is a pretty close average of values in this region). The NextMap data was extracted for the area, and converted into feet. The two raster sets were fixed to the same origin point. The subsidence grid was then created by subtracting the old contour-derived grid from the NextMAP DEM. The subsidence grid that includes all of the values has the suffix “ALL”. Then, to improve the display fidelity, some of the extreme values (above +5’ and below -20’*) were filtered out of the dataset, and the subsidence grid was regenerated for these areas and suffixed with “cut.” The purpose of this cut was to extract some of the riverine and hilly areas that produced more extreme values and other artifacts purely due to the analysis approach (i.e. not actual real elevation change). * - some of the areas with more than 20 feet of subsidence were omitted from this clipping, because they were in heavily subsided areas and may be “real subsidence.”The resulting subsidence product should be perceived in light of the above. Some of the collar of the San Joaquin Valley shows large changes, but that is simply due to the analysis method. Also, individual grid cells may or may not be comparing the same real features. Errors are baked into both comparison datasets. However, it is important to note that the large areas of subsidence in the primary agriculture area agree fairly well with a cruder USGS subsidence map of the Valley based on extensometer data. We have confidence that the big picture story these results show us is largely correct, and that the magnitudes of subsidence are somewhat reasonable. The contour set can serve as the baseline to support future comparisons using more recent or future data as it becomes available. It should be noted there are two key versions of the data. The “Final Deliverables” from 2/2017 were delivered to support the initial Public Affairs press release. Subsequent improvements were made in coverage and blunder correction as time permitted (it should be noted this occurred in the midst of the Oroville Dam emergency) to produce the final as of 3/12/2017. Further improvements in overall quality and filtering could occur in the future if time and needs demand it. Update (4/3/2019, Ben Brezing): The raster was further smoothed to remove artifacts that result from comparing the high resolution NextMAP DEM to the lower resolution DEM that was derived from the 1950’s quad map contours. The smoothing was accomplished by removing raster cells with values that are more than 0.5 feet different than adjacent cells (25 meter cell size), as well as the adjacent cells. The resulting raster was then resampled to a raster with 100 meter cell size using cubic resampling technique and was then converted to a point feature class. The point feature class was then interpolated to a raster with 250 meter cell size using the IDW technique, a fixed search radius of 1250 meters and power=2. The resulting raster was clipped to a smaller extent to remove noisier areas around the edges of the Central Valley while retaining coverage for the main area of interest.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, is composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats. The Watershed Boundary Dataset is being developed under the leadership of the Subcommittee on Spatial Water Data, which is part of the Advisory Committee on Water Information (ACWI) and the Federal Geographic Data Committee (FGDC). The USDA Natural Resources Conservation Service (NRCS), along with many other federal agencies and national associations, have representatives on the Subcommittee on Spatial Water Data. As watershed boundary geographic information systems (GIS) coverages are completed, statewide and national data layers will be made available via the Geospatial Data Gateway to everyone, including federal, state, local government agencies, researchers, private companies, utilities, environmental groups, and concerned citizens. The database will assist in planning and describing water use and related land use activities. Resources in this dataset:Resource Title: Watershed Boundary Dataset (WBD). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/dataset/?cid=nrcs143_021630 Web site for the Watershed Boundary Dataset (WBD), including links to:
Review Data Availability (Status Maps)
Obtain Data by State, County, or Other Area
Obtain Seamless National Data offsite link image
Geospatial Data Tools
National Technical and State Coordinators
Information about WBD dataset
Groundwater SPA. This GIS layer consists of the geographic location of the Source Protection Areas for active and inactive Public Community and Non-Transient Non-Community groundwater sources labeled by the Water System Identification Number (WSID) and source number (i.e. WL001 or IN002). The source locations are drawn from the State Drinking Water database (SDWIS). The water sources are wells and springs that predate regulations developed in the 1970s to new sources under review now. Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health (historical) personnel. Buffered SPAs are based on the point location of the water source(s). Refer to the SOURCE coverage documentation file for information on data sources used.For information regarding attributes of Public Water Source feature layers, please download the:Public Water Sources Data DictionaryUPDATE: 6/17/2022 to add source information and recent edits by DWGWP staff.
Introduction
Climate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.
The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.
This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.
This map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).
Areas using lidar-based elevation data: U.S. coastal states except Alaska
Elevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)).
Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago.
CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.
Warning for areas using other elevation data (all other areas)
Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.
SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.
Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.
Flood control structures (U.S.)
Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.