This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of geo-referenced x, y coordinates and z (elevation), as well as other attributes for each point. Additonal information about the las file format can be found here: https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities. All 3DEP products are public domain.
Original Product: These lidar data are processed Classified LAS 1.4 files, formatted to 654 individual 1000 m x 1000 m tiles; used to create intensity images, 3D breaklines, and hydro-flattened DEMs as necessary.
Original Dataset Geographic Extent: 4 counties (Alameda, Marin, San Francisco, San Mateo) in California, covering approximately 53 total square miles.
Original Dataset Descriptio...
The goal of the USGS 3D Elevation Program (3DEP) is to collect elevation data in the form of light detection and ranging (LiDAR) data over the conterminous United States, Hawaii, and the U.S. territories, with data acquired over an 8-year period. This dataset provides two realizations of the 3DEP point cloud data. The first resource is a public access organization provided in Entwine Point Tiles format, which a lossless, full-density, streamable octree based on LASzip (LAZ) encoding. The second resource is a Requester Pays of the original, Raw LAZ (Compressed LAS) 1.4 3DEP format, and more complete in coverage, as sources with incomplete or missing CRS, will not have an ETP tile generated. Resource names in both buckets correspond to the USGS project names.
The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.
Product: Processed, classified lidar point cloud data tiles in LAS 1.4 format. Geographic Extent: Approximately 4,028 square miles encompassing the Big Island of Hawaii. Dataset Description: The HI Hawaii Island Lidar NOAA 2017 B17 lidar project called for the planning, acquisition, processing, and production of derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications were based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification 2020 Revision A. The data was developed based on a horizontal datum/projection of NAD83 (PA11) UTM Zone 5N Meters (EPSG 6635) and a vertical datum of NAVD88 (GEOID12B) Meters. Lidar data was delivered as processed LAS 1.4 files formatted to 8,629 individual 1,000-meter x 1,000-meter tiles. Ground Conditions: Lidar was collected from January 30, 2018 through January 6, 2020 by Leica Geosystems, Inc. while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Woolpert established 70 ground control points that were used to calibrate the lidar to known ground locations established throughout the project area. Additional independent accuracy checkpoints were collected by NOAA and used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. This dataset has been noted to have issues with ground classification in areas of dense vegetation. Please read the data use constraints section for further details.
This web map provides an index for identifying subsets of LiDAR data acquired for the greater metropolitan Phoenix region in 2014 via a (non-3DEP) USGS LiDAR program.Two index layers are included in this web map: (1) Point Cloud Index, (2) Raster Index. Another layer, Maricopa County Municipalities, is included as an additional geographic reference aid. LiDAR Point Cloud Index The Point Cloud Index layer indexes the raw LiDAR point cloud data (available in las/laz file formats). Each tile's file name can be identified by clicking on a particular tile.DEM Raster IndexThe Raster Index layer indexes the LiDAR-derived bare earth digital elevation model (DEM) surface data (available in tif file format). Users can click on a particular tile within the index to identify its ID.Once you have identified your file name or ID of interest, please submit a quick service request through the Map and Geospatial Hub's Service Request Form.Technical SpecificationsHorizontal Projection: UTM 12N WGS 84 (meters)Vertical Datum: NAVD 1988 (meters) Geoid 12APoint Spacing (minimum): 0.5 m / 1.64 ftAbove Ground Level (AGL) average flight height: 1700 m / 5,579 ftMean Sea Level (MSL) average flying height: 1981 m / 6500 ftAverage Ground Speed: 140 knots / 161 mphField of View (full): 28 degreesPulse Rate: 312.2 kHzScan Rate: 54.8 HzSide Lap (Minimum): 25%
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A bathymetric survey of Blue Mountain Lake, Arkansas, was conducted in May 2017 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for sonar surveys similar to those described by Wilson and Richards (2006). Point data from the bathymetric survey were merged with point data from an aerial LiDAR survey conducted in December 2010, for the U.S. Army Corps of Engineers (USACE), Little Rock District. From the combined point data, a terrain dataset (a type of triangulated irregular network, or TIN, model) was created in Esri ArcGIS for the lakebed within the extent of pool elevation 420 feet above the North American Vertical Datum of 1988 (NAVD88). This Esri file geodatabase contains the following products: 1) point data from the bathymetric and LiDAR surveys; 2) a terrain dataset; 3) a digital elevation model (DEM) in Esri GRID format with a 3-ft cell size; 4) a feature class of bathymetric contours at 4-ft intervals; and 5) a ...
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2022 New York and New Jersey United States Army Corps of Engineers (USACE) U.S. Geological Survey (USGS) topobathymetric (topobathy) lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
Original Dataset Product: Processed, classified lidar point cloud data tiles in LAZ 1.4 format. Original Dataset Geographic Extent: HI_NOAAMauiOahu_1: The work unit covers approximately 446 square miles (260.7 square miles of Molokai, 140.7 square miles of Lanai, and 44.6 square miles of Kahoolawe in the state of Hawaii). HI_NOAAMauiOahu_2: The work unit covers approximately 540.86 square miles of Maui and 496.61 square miles of Oahu in the state of Hawaii. Original Dataset Description: HI_NOAAMauiOahu_1 (Kahoolawe, Lanai, Molokai) HI_NOAAMauiOahu_1_B20 lidar project called for the planning, acquisition, processing, and production of derivative products of QL1 lidar data to be collected an aggregate nominal pulse spacing (ANPS) of 0.35-meters and 8 points per square meter (ppsm). Project specifications were based on the National Geospatial Program Lidar Base Specification Version 2.1, and the American Society of Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (Edition 1, Version 1.0). The data was developed based on a horizontal reference system of NAD83 (PA11), UTM 4 (EPSG 6634), Meter, and a vertical reference system of NAVD88 (GEOID12B), Meter. Lidar data was delivered as processed LAZ 1.4 files formatted to 5,044 individual 500-meters x 500-meters tiles. Note: Between 2020 and 2023 multiple mobilizations were made to collect the data in the project area due to the extreme terrain and persistent low clouds. On March 31, 2023, it was decided between Woolpert and USGS to end the acquisition phase of the project and move onto processing with the data collected. The DPA and work unit has been clipped to the extent of the data collected. Areas of low point density and/or small data voids within the work unit have been identified with low confidence polygons. HI_NOAAMauiOahu_2 (Maui, Oahu) HI_NOAAMauiOahu_2_B20 lidar project called for the planning, acquisition, processing, and production of derivative products of QL1 lidar data to be collected an aggregate nominal pulse spacing (ANPS) of 0.35-meters and 8 points per square meter (ppsm). Project specifications were based on the National Geospatial Program Lidar Base Specification Version 2.1, and the American Society of Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (Edition 1, Version 1.0). The data was developed based on a horizontal reference system of NAD83 (PA11), UTM 4 (EPSG 6634), Meter, and a vertical reference system of NAVD88 (GEOID12B), Meter. Lidar data was delivered as processed LAZ 1.4 files formatted to 11,716 individual 500-meters x 500-meters tiles. Note: Between 2020 and 2023 multiple mobilizations were made to collect the data in the project area due to the extreme terrain and persistent low clouds. On March 31, 2023, it was decided between Woolpert and USGS to end the acquisition phase of the project and move onto processing with the data collected. The DPA and work unit has been clipped to the extent of the data collected. Areas of low point density and/or small data voids within the work unit have been identified with low confidence polygons. Original Dataset Ground Conditions: HI_NOAAMauiOahu_1 (Kahoolawe, Lanai, Molokai) Lidar was collected from August 2, 2022, through July 9, 2023 while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Woolpert established ground control points that were used to calibrate the lidar to known ground locations established throughout the entire project area. An additional independent accuracy checkpoints were collected throughout the entire project area and used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. HI_NOAAMauiOahu_2 (Maui, Oahu) Lidar was collected from January 11, 2023, through July 7, 2023 while rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Woolpert established ground control points that were used to calibrate the lidar to known ground locations established throughout the entire project area. An additional independent accuracy checkpoints were collected throughout the entire project area and used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.
This metadata reflects the combination of three lidar collections over Alameda County, CA. These are: 1) a 2019 QL1 collection upgraded to 3DEP specifications; 2) a 2021 QL1 collection; and 3) a 2021 QL0 collection. Each dataset has an Entwine Point Tile version that makes the data accessible by the Digital Coast Data Access Viewer. This metadata is to support that use by the Data Access Viewer...
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release consists of three child items distinguishing the following types of data: light detection and ranging (lidar) point clouds (LPCs), digital elevation models (DEMs), and snow depth raster maps. These three data types are all derived from lidar data collected on small, uncrewed aircraft systems (sUAS) at study areas in the Upper Colorado River Basin, Colorado, from 2020 to 2022. These data were collected and generated as part of the U.S. Geological Survey's (USGS) Next Generation Water Observing Systems (NGWOS) Upper Colorado River Basin project.
description: Product: This lidar data set includes classified LAS files, breaklines, digital elevation models (DEMs), intensity imagery, and contours. Geographic Extent: Four partial counties in western Maine, covering approximately 5,034 total square miles Dataset Description: Maine 2016 QL2 Lidar project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) UTM Zone 19, meters and vertical datum of NAVD1988 (Geoid 12B), meters. Lidar data was delivered as flightline-extent unclassified LAS swaths, as processed Classified LAS files formatted to 6,115 individual 1,500 meter x 1,500 meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500 meter x 1,500 schema. Continuous breaklines were produced in Esri file geodatabase format. Continuous contours with an interval of 1 foot were created in Esri file geodatabase format. Ground Conditions: Lidar was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 101 ground control points that were used to calibrate the lidar to known ground locations established throughout the Maine project area. An additional 205 independent accuracy checkpoints, 118 in Bare Earth and Urban landcovers (118 NVA points), 87 in Forested, Brushland/Trees, and Tall Weeds/Crops categories (87 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. In addition to the lidar point data, bare earth Digital Elevation Models (DEMs), at a 1 m grid spacing, created from the lidar point data are also available. These data are available for download here: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=6267 Breaklines created from the lidar area also available for download in either gdb or gpkg format at: https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6264/breaklines The DEM and breakline products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA, OCM or its partners.; abstract: Product: This lidar data set includes classified LAS files, breaklines, digital elevation models (DEMs), intensity imagery, and contours. Geographic Extent: Four partial counties in western Maine, covering approximately 5,034 total square miles Dataset Description: Maine 2016 QL2 Lidar project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) UTM Zone 19, meters and vertical datum of NAVD1988 (Geoid 12B), meters. Lidar data was delivered as flightline-extent unclassified LAS swaths, as processed Classified LAS files formatted to 6,115 individual 1,500 meter x 1,500 meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500 meter x 1,500 schema. Continuous breaklines were produced in Esri file geodatabase format. Continuous contours with an interval of 1 foot were created in Esri file geodatabase format. Ground Conditions: Lidar was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 101 ground control points that were used to calibrate the lidar to known ground locations established throughout the Maine project area. An additional 205 independent accuracy checkpoints, 118 in Bare Earth and Urban landcovers (118 NVA points), 87 in Forested, Brushland/Trees, and Tall Weeds/Crops categories (87 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. In addition to the lidar point data, bare earth Digital Elevation Models (DEMs), at a 1 m grid spacing, created from the lidar point data are also available. These data are available for download here: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=6267 Breaklines created from the lidar area also available for download in either gdb or gpkg format at: https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6264/breaklines The DEM and breakline products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA, OCM or its partners.
Original Dataset Product: 0.5-meter bare-earth raster digital elevation model (DEM) data tiles in GeoTIFF format. Original Dataset Geographic Extent: HI_NOAAMauiOahu_1: The work unit covers approximately 446 square miles (260.7 square miles of Molokai, 140.7 square miles of Lanai, and 44.6 square miles of Kahoolawe in the state of Hawaii). HI_NOAAMauiOahu_2: The work unit covers approximately 540.86 square miles of Maui and 496.61 square miles of Oahu in the state of Hawaii. Original Dataset Description: HI_NOAAMauiOahu_1 (Kahoolawe, Lanai, Molokai) HI_NOAAMauiOahu_1_B20 lidar project called for the planning, acquisition, processing, and production of derivative products of QL1 lidar data to be collected an aggregate nominal pulse spacing (ANPS) of 0.35-meters and 8 points per square meter (ppsm). Project specifications were based on the National Geospatial Program Lidar Base Specification Version 2.1, and the American Society of Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (Edition 1, Version 1.0). The data was developed based on a horizontal reference system of NAD83 (PA11), UTM 4 (EPSG 6634), Meter, and a vertical reference system of NAVD88 (GEOID12B), Meter. DEM data was delivered as processed GeoTIFF files formatted to 5,044 individual 500-meters x 500-meters tiles. Note: Between 2020 and 2023 multiple mobilizations were made to collect the data in the project area due to the extreme terrain and persistent low clouds. On March 31, 2023, it was decided between Woolpert and USGS to end the acquisition phase of the project and move onto processing with the data collected. The DPA and work unit has been clipped to the extent of the data collected. Areas of low point density and/or small data voids within the work unit have been identified with low confidence polygons. HI_NOAAMauiOahu_2 (Maui, Oahu) HI_NOAAMauiOahu_2_B20 lidar project called for the planning, acquisition, processing, and production of derivative products of QL1 lidar data to be collected an aggregate nominal pulse spacing (ANPS) of 0.35-meters and 8 points per square meter (ppsm). Project specifications were based on the National Geospatial Program Lidar Base Specification Version 2.1, and the American Society of Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (Edition 1, Version 1.0). The data was developed based on a horizontal reference system of NAD83 (PA11), UTM 4 (EPSG 6634), Meter, and a vertical reference system of NAVD88 (GEOID12B), Meter. DEM data was delivered as processed GeoTIFF files formatted to 11,716 individual 500-meters x 500-meters tiles. Note: Between 2020 and 2023 multiple mobilizations were made to collect the data in the project area due to the extreme terrain and persistent low clouds. On March 31, 2023, it was decided between Woolpert and USGS to end the acquisition phase of the project and move onto processing with the data collected. The DPA and work unit has been clipped to the extent of the data collected. Areas of low point density and/or small data voids within the work unit have been identified with low confidence polygons. Original Dataset Ground Conditions: HI_NOAAMauiOahu_1 (Kahoolawe, Lanai, Molokai) Lidar was collected from August 2, 2022, through July 9, 2023 while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Woolpert established ground control points that were used to calibrate the lidar to known ground locations established throughout the entire project area. An additional independent accuracy checkpoints were collected throughout the entire project area and used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. HI_NOAAMauiOahu_2 (Maui, Oahu) Lidar was collected from January 11, 2023, through July 7, 2023 while rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Woolpert established ground control points that were used to calibrate the lidar to known ground locations established throughout the entire project area. An additional independent accuracy checkpoints were collected throughout the entire project area and used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.
This metadata record describes the lidar point cloud data encompassing Southern New Jersey, collected as 2 areas of interest through the USGS projects titled 'NJ South 4-County' and 'NJ South FEMA' by the Sanborn Map Company, Inc. NOAA's Office for Coastal Management retrieved the data from the USGS' rockyftp website and processed it to the Digital Coast.
Product: These lidar data are process...
The Project data set consists of the Classified Point Cloud. The Geographical Extent of this dataset extends to the entirety of the AL_SWCentral_B22 UTM Zone 16N boundary, approximately 4685 square miles in the following counties: Choctaw, Mobile, Tuscaloosa, Washington
Ground Conditions: water at normal levels; no unusual inundation; no snow; leaf off. How the Withheld Points are Identified...
Original Dataset Product: Processed, classified lidar point cloud data tiles in LAZ 1.4 format. Original Dataset Geographic Extent: HI_NOAAMauiOahu_3: The work unit covers approximately Approximately 306 square miles on the eastern side of the big island of Hawaii. Original Dataset Description: HI_NOAAMauiOahu_3 (Big Island) The HI_NOAAMauiOahu_3_B20 lidar project called for the planning, acquisition, processing, and production of derivative products of QL1 lidar data to be collected an aggregate nominal pulse spacing (ANPS) of 0.35-meters and 8 points per square meter (ppsm). Project specifications were based on the National Geospatial Program Lidar Base Specification Version 2.1, and the American Society of Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (Edition 1, Version 1.0). The data was developed based on a horizontal reference system of NAD83 (PA11), UTM 5 (EPSG 6635), Meter, and a vertical reference system of NAVD88 (GEOID12B), Meter. Lidar data was delivered as processed LAZ 1.4 files formatted to 3,450 individual 500-meters x 500-meters tiles. Note: Between 2020 and 2023 multiple mobilizations were made to collect the data in the project area due to the extreme terrain and persistent low clouds. On March 31, 2023, it was decided between Woolpert and USGS to end the acquisition phase of the project and move onto processing with the data collected. The DPA and work unit has been clipped to the extent of the data collected. Areas of low point density and/or small data voids within the work unit have been identified with low confidence polygons. Original Dataset Ground Conditions: HI_NOAAMauiOahu_3 (Big Island) Lidar was collected from February 14, 2023, through March 15, 2023 while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Woolpert established ground control points that were used to calibrate the lidar to known ground locations established throughout the entire project area. An additional independent accuracy checkpoints were collected throughout the entire project area and used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.
U.S. Geological Survey (USGS) scientists conducted field data collection efforts between July 19th and 31st, 2021 over a large stretch of the McKenzie River in Oregon using high accuracy surveying technologies. The work was initiated as an effort to validate commercially acquired topobathymetric light detection and ranging (lidar) data that was collected coincidentally between July 26th and 30th, 2021 for the USGS 3D Elevation Program (3DEP). The goal was to compare and validate the airborne lidar data to topographic, bathymetric, structural, and infrastructural data collected through more traditional means (e.g., Global Navigational Satellite System (GNSS) surveying). Evaluating these data will provide valuable information on the performance of inland topobathymetric lidar mapping capabilities and their potential for use and inclusion in the USGS National Geospatial Program 3D Elevation Program. The airborne topobathymetric lidar data will be used for developing reliable hydraulic models, which can be used to model potential flood inundation and analysis for other potential hazards such as landslides. The bathymetric lidar data will also be used for characterization of endangered species aquatic habitat, including that of salmon and steelhead trout species. Furthermore, a large portion of the McKenzie River corridor that was mapped by the airborne topobathymetric lidar was impacted by the Holiday Farm Fire that burned over 170,000 acres during September of 2020 and the airborne data will be used to support post-fire geomorphic change detection.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This raster dataset contains 1-meter lidar-derived imagery of 7.5 minute quadrangles in karst areas of Puerto Rico and was created using geographic information systems (GIS) software. Lidar-derived elevation data, acquired in 2018, were used to create a 1-meter resolution working digital elevation model (DEM). To create this imagery, a hillshade was applied and a topographic position index (TPI) raster was calculated. These two rasters were uploaded into GlobalMapper, where the TPI raster was made partially transparent and overlaid the hillshade DEM. The resulting image was exported to create these 1-meter resolution lidar-derived images. The data is projected in North America Datum (NAD) 1983 (2011) UTM Zone 19N.
USGS task order 140G0218F0420 required Winter, 2018/Spring, 2019 LiDAR surveys to be collected over 32,562 square miles covering part or all of 82 counties in Georgia and 3 partial counties in South Carolina in support of the State of Georgia and the USGS 3DEP program. Aerial LiDAR data for this task order was planned, acquired, processed and produced at an aggregate nominal pulse spacing (ANPS...
Product: These lidar data are processed Classified LAS 1.4 files, formatted to 16,801 individual 1000 m x 1000 m tiles; used to create intensity images, 3D breaklines and hydro-flattened DEMs as necessary.
Geographic Extent: Bay, Calhoun, Covington, Decatur, Dixie, Escambia, Franklin, Gadsden, Geneva, Grady, Gulf, Holmes, Houston, Jackson, Jefferson, Lafayette, Leon, Liberty, Madison, Okalo...
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of geo-referenced x, y coordinates and z (elevation), as well as other attributes for each point. Additonal information about the las file format can be found here: https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities. All 3DEP products are public domain.