The ArcGIS Online USGS Topographic Maps image service contains over 181,000 historical topographic quadrangle maps (quads) dating from 1879 to 2006. These maps are part of the USGS Historical Topographic Map Collection (HTMC) which includes all the historical quads that had been printed since the USGS topographic mapping program was initiated in 1879. Previously available only as printed lithographic copies, the historical maps were scanned “as is” to create high-resolution images that capture the content and condition of each map sheet. All maps were georeferenced, and map metadata was captured as part of the process.
For the Esri collection, the scanned maps were published as this ArcGIS Online image service which can be viewed on the web and allows users to download individual scanned images. Esri’s collection contains historical quads (excluding orthophotos) dating from 1879 to 2006 with scales ranging from 1:10,000 to 1:250,000. The scanned maps can be used in ArcGIS Pro, ArcGIS Online, and ArcGIS Enterprise. They can also be downloaded as georeferenced TIFs for use in these and other applications.
We make it easy for you to explore and download these maps, or quickly create an ArcGIS Online map, using our Historical Topo Map Explorer app. The app provides a visual interface to search and explore the historical maps by geographic extent, publication year, and map scale. And you can overlay the historical maps on a satellite image or 3D hillshade and add labels for current geographic features.
December 1995, June 2001
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:Find a location of interest.View the maps.Compare the maps.Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location. Save the maps in an ArcGIS Online web map.
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.
From the site: “A Digital Raster Graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) topographic map. An unclipped scanned image includes all marginal information, while a clipped or seamless scanned image clips off the collar information. DRGs may be used as a source or background layer in a geographic information system, as a means to perform quality assurance on other digital products, and as a source for the collection and revision of digital line graph data. The DRGs also can be merged with other digital data (e.g., digital elevation model or digital orthophotoquad data), to produce a hybrid digital file.
The output resolution of a DRG varies from 250 to 500 dots per inch. The horizontal positional accuracy of the DRG matches the accuracy of the published source map. To be consistent with other USGS digital data, the image is cast on the UTM projection, and therefore, will not always be consistent with the credit note on the image collar. Only the area inside the map neatline is georeferenced, so minor distortion of the text may occur in the map collar. Refer to the scanned map collar or online Map List for the currentness of the DRG.”
This map service displays the extents and designated names of the 1:63,360 and 1:250,000 scale USGS topographic maps for the State of Alaska. This feature layer includes online links to the USGS map download site. The Alaska topo maps were produced by USGS in the 1950s and 1960s, with limited newer updates in selected areas, primarily in urban areas such as Anchorage, Fairbanks, and Juneau.All Alaska topo maps, as well as topo maps of the other 49 United States, can be downloaded from the U.S. Geological Survey at https://apps.nationalmap.gov/downloader/#/
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
A Digital Raster Graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) topographic map. An unclipped scanned image includes all marginal information, while a clipped or seamless scanned image clips off the collar information. DRGs may be used as a source or background layer in a geographic information system, as a means to perform quality assurance on other digital products, and as a source for the collection and revision of digital line graph data. The DRGs also can be merged with other digital data (e.g., digital elevation model or digital orthophotoquad data), to produce a hybrid digital file. The output resolution of a DRG varies from 250 to 500 dots per inch. The horizontal positional accuracy of the DRG matches the accuracy of the published source map. To be consistent with other USGS digital data, the image is cast on the UTM projection, and therefore, will not always be consistent with the credit note on the image collar. Only the area inside the map neatline is georeferenced, so minor distortion of the text may occur in the map collar. Refer to the scanned map collar or online Map List for the currentness of the DRG.
QUADRANGLES_24K_USGS_IN is a polygon shapefile defining the boundaries of the USGS 7.5-minute (1:24,000-scale) quadrangles which cover the state of Indiana. Dates of publication and photorevision of paper quadrangle maps published by the U.S. Geological Survey are also provided.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This geologic map area of 5,430 km2 spans a reach of the lower Missouri River valley and adjoining uplands for about 100 kilometers east of Gavins Point Dam, the easternmost mainstem dam on the Missouri River. Understanding the surficial geologic history of the valley is relevant to natural resource management of the Missouri National Recreational River and is foundational to improved understanding of hydrology and ecology. This geodatabase is a synthesis of recent FEDMAP, EDMAP, and STATEMAP work of the National Cooperative Geologic Mapping Program with previously published maps of the geologic surveys of South Dakota, Nebraska, Iowa, and the USGS. Other data sources utilized for this map include NAIP ortho-imagery (especially for the modern river system), a photogrammetrically-produced DEM of the Missouri River Valley, and NRCS Soil Survey data. Mapping herein is based on geomorphic and other surficial characteristics as well as sedimentary and stratigraphic characteristics ...
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless ...
The QUADS coverage contains 1:24,0000 neatlines for the USGS 7.5-minute quadrangle series. It was digitally generated to provide a reference template for mapping, digitizing, and archiving other GRANIT data layers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data repository contains the base map for the geologic mapping of the Aphrodite Region of Venus (I-2476). Data for this study were provided by the U.S. Geological Survey (USGS) Astrogeology Team in the projection parameters (Mercator projection). The data are also available online from the USGS Map-a-planet website (https://astrocloud.wr.usgs.gov/ ).
The datasets include: (a) Cycle 1 (east-directed illumination, or left-looking) SAR images cover essentially the entire I-2476 map area; (b) Topography (Global Topographic Data Record 3; GTDR 3); (c) Slope data (Global Slope Data Record; GSDR); (d) Reflectivity (Global Reflectivity Data Record; GRDR); and (e) Emissivity (Global Emissivity Data Record; GEDR).
The Geologic Map Index of Alaska (Map Index) is a GIS web feature service paired with an interactive web map application that provides access to an actively growing geographic index of geology-related maps of Alaska and adjacent areas. This online research tool provides the locations and outlines of most DGGS and U.S. Geological Survey (USGS) geologic maps of Alaska in a single, interactive web application. It allows searches of the map database by geographic area of interest, keywords, publishing agency, dates, and other criteria. The search results link DGGS's comprehensive, multi-agency publications database, where users can view and download publications for free. Map Index provides access to traditional geologic maps and sample location, geologic hazards, and geologic resources maps. In addition, DGGS plans to add outlines and data to the application for new and remaining geologic maps published by DGGS, USGS, U.S. Bureau of Mines, and U.S. Bureau of Land Management. Reports without maps can be accessed through DGGS's comprehensive publications database, .
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore Fort Ross map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Fort Ross map area data layers. Data layers are symbolized as shown on the associated map sheets.
Coal Fields of the Conterminous United States: National Coal Resource Assessment Updated Version; includes GISzip and metadata downloads.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This zip file contains geodatabases with raster mosaic datasets. The raster mosaic datasets consist of georeferenced tiff images of mineral potential maps, their associated metadata, and descriptive information about the images. These images are duplicates of the images found in the georeferenced tiff images zip file. There are four geodatabases containing the raster mosaic datasets, one for each of the four SaMiRA report areas: North-Central Montana; North-Central Idaho; Southwestern and South-Central Wyoming and Bear River Watershed; and Nevada Borderlands. The georeferenced images were clipped to the extent of the map and all explanatory text, gathered from map explanations or report text was imported into the raster mosaic dataset database as ‘Footprint’ layer attributes. The data compiled into the 'Footprint' layer tables contains the figure caption from the original map, online linkage to the source report when available, and information on the assessed commodities accordin ...
This map service displays the extents and designated names of the 1:63,360 and 1:250,000 scale USGS topographic maps for the State of Alaska. This feature layer includes online links to the USGS map download site. The Alaska topo maps were produced by USGS in the 1950s and 1960s, with limited newer updates in selected areas, primarily in urban areas such as Anchorage, Fairbanks, and Juneau.All Alaska topo maps, as well as topo maps of the other 49 United States, can be downloaded from the U.S. Geological Survey at https://apps.nationalmap.gov/downloader/#/
This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" "Standard" (https://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Cari ...
The ArcGIS Online USGS Topographic Maps image service contains over 181,000 historical topographic quadrangle maps (quads) dating from 1879 to 2006. These maps are part of the USGS Historical Topographic Map Collection (HTMC) which includes all the historical quads that had been printed since the USGS topographic mapping program was initiated in 1879. Previously available only as printed lithographic copies, the historical maps were scanned “as is” to create high-resolution images that capture the content and condition of each map sheet. All maps were georeferenced, and map metadata was captured as part of the process.
For the Esri collection, the scanned maps were published as this ArcGIS Online image service which can be viewed on the web and allows users to download individual scanned images. Esri’s collection contains historical quads (excluding orthophotos) dating from 1879 to 2006 with scales ranging from 1:10,000 to 1:250,000. The scanned maps can be used in ArcGIS Pro, ArcGIS Online, and ArcGIS Enterprise. They can also be downloaded as georeferenced TIFs for use in these and other applications.
We make it easy for you to explore and download these maps, or quickly create an ArcGIS Online map, using our Historical Topo Map Explorer app. The app provides a visual interface to search and explore the historical maps by geographic extent, publication year, and map scale. And you can overlay the historical maps on a satellite image or 3D hillshade and add labels for current geographic features.