EarthExplorerUse the USGS EarthExplorer (EE) to search, download, and order satellite images, aerial photographs, and cartographic products. In addition to data from the Landsat missions and a variety of other data providers, EE provides access to MODIS land data products from the NASA Terra and Aqua missions, and ASTER level-1B data products over the U.S. and Territories from the NASA ASTER mission. Registered users of EE have access to more features than guest users.Earth Explorer Distribution DownloadThe EarthExplorer user interface is an online search, discovery, and ordering tool developed by the United States Geological Survey (USGS). EarthExplorer supports the searching of satellite, aircraft, and other remote sensing inventories through interactive and textual-based query capabilities. Through the interface, users can identify search areas, datasets, and display metadata, browse and integrated visual services within the interface.The distributable version of EarthExplorer provides the basic software to provide this functionality. Users are responsible for verification of system recommendations for hosting the application on your own servers. By default, this version of our code is not hooked up to a data source so you will have to integrate the interface with your data. Integration options include service-based API's, databases, and anything else that stores data. To integrate with a data source simply replace the contents of the 'getDataset' and 'search' functions in the CWIC.php file.Distribution is being provided due to users requests for the codebase. The EarthExplorer source code is provided "As Is", without a warranty or support of any kind. The software is in the public domain; it is available to any government or private institution.The software code base is managed through the USGS Configuration Management Board. The software is managed through an automated configuration management tool that updates the code base when new major releases have been thoroughly reviewed and tested.Link: https://earthexplorer.usgs.gov/
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
Since 1972, the joint NASA/ U.S. Geological Survey Landsat series of Earth Observation satellites have continuously acquired images of the Earth’s land surface, providing uninterrupted data to help land managers and policymakers make informed decisions about natural resources and the environment.
Landsat is a part of the USGS National Land Imaging (NLI) Program. To support analysis of the Landsat long-term data record that began in 1972, the USGS. Landsat data archive was reorganized into a formal tiered data collection structure. This structure ensures all Landsat Level 1 products provide a consistent archive of known data quality to support time-series analysis and data “stacking”, while controlling continuous improvement of the archive, and access to all data as they are acquired. Collection 1 Level 1 processing began in August 2016 and continued until all archived data was processed, completing May 2018. Newly-acquired Landsat 8 and Landsat 7 data continue to be processed into Collection 1 shortly after data is downlinked to USGS EROS.
Acknowledgement or credit of the USGS as data source should be provided by including a line of text citation such as the example shown below. (Product, Image, Photograph, or Dataset Name) courtesy of the U.S. Geological Survey Example: Landsat-8 image courtesy of the U.S. Geological Survey
The first generation of U.S. photo intelligence satellites collected more than 860,000 images of the Earth’s surface between 1960 and 1972. The classified military satellite systems code-named CORONA, ARGON, and LANYARD acquired photographic images from space and returned the film to Earth for processing and analysis. The images were originally used for reconnaissance and to produce maps for U.S. intelligence agencies. In 1992, an Environmental Task Force evaluated the application of early satellite data for environmental studies. Since the CORONA, ARGON, and LANYARD data were no longer critical to national security and could be of historical value for global change research, the images were declassified by Executive Order 12951 in 1995. The first successful CORONA mission was launched from Vandenberg Air Force Base in 1960. The satellite acquired photographs with a telescopic camera system and loaded the exposed film into recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The intelligence community used Keyhole (KH) designators to describe system characteristics and accomplishments. The CORONA systems were designated KH-1, KH-2, KH-3, KH-4, KH-4A, and KH-4B. The ARGON systems used the designator KH-5 and the LANYARD systems used KH-6. Mission numbers were a means for indexing the imagery and associated collateral data. A variety of camera systems were used with the satellites. Early systems (KH-1, KH-2, KH-3, and KH-6) carried a single panoramic camera or a single frame camera (KH-5). The later systems (KH-4, KH-4A, and KH-4B) carried two panoramic cameras with a separation angle of 30° with one camera looking forward and the other looking aft. The original film and technical mission-related documents are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery. Mathematical calculations based on camera operation and satellite path were used to approximate image coordinates. Since the accuracy of the coordinates varies according to the precision of information used for the derivation, users should inspect the preview image to verify that the area of interest is contained in the selected frame. Users should also note that the images have not been georeferenced.
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 271 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.
On February 24, 1995, President Clinton signed an Executive Order, directing the declassification of intelligence imagery acquired by the first generation of United States photo-reconnaissance satellites, including the systems code-named CORONA, ARGON, and LANYARD. More than 860,000 images of Earth's surface, collected between 1960 and 1972, were declassified with the issuance of this Executive Order. The National Archives and Records Administration (NARA) was given the responsibility for the original film and provide access to a duplicate copy for public viewing of the film. The USGS was also provided a dupe copy to support science products. Both NARA and the USGS provide access and product support for Declass-1 collection.
Online requests for these data can be placed via the EarthExplorer interactive query system. EarthExplorer contains metadata and online samples of Earth science data. With EarthExplorer, you may review metadata, determine product availability, and place online requests for products.
More than 40 percent of the imagery contains significant cloud cover. The use of browse imagery gives the user the opportunity to review a reduced spatial resolution image to determine whether or not the area of interest is covered and is or is not obscured by clouds.
High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.
A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.
This joint NASA/USGS program provides the longest continuous space-based record of
Earth’s land in existence. Every day, Landsat satellites provide essential information
to help land managers and policy makers make wise decisions about our resources and our environment.
Data is provided for Landsats 1, 2, 3, 4, 5, 7, 8, and 9 (excludes Landsat 6).As of June 28, 2023 (announcement),
the previous single SNS topic arn:aws:sns:us-west-2:673253540267:public-c2-notify
was replaced with
three new SNS topics for different types of scenes.
Landsat 8 Collection 2 Tier 1 の地上(TOA)反射率が補正されています。キャリブレーション係数は画像メタデータから抽出されます。TOA の計算の詳細については、Chander et al.(2009)をご覧ください。利用可能なデータ品質が最も高い Landsat シーンは Tier 1 に分類され、時系列処理分析に適していると見なされます。…
To provide processed satellite images of key areas along the U. S.-Mexico border for use in a broad spectrum of studies. Landsat data have been used by government, commercial, industrial, civilian, and educational communities in the U.S. and worldwide. They are being used to support a wide range of applications in such areas as global change research, agriculture, forestry, geology, resources management, geography, mapping, water quality, and oceanography. Landsat data have potential applications for monitoring the conditions of the Earth's land surface.
The passage of the North American Trade Agreement (NAFTA), establishment of the Border Environmental Cooperation Commission as well as the EPA U.S./Mexico Border XXI Program has focused attention to the environmental social-cultural, and economic conditions in the United States-Mexico frontier and to the enhanced necessity of a binational, transborder approach in addressing problems. Towards this end, this U.S.-Mexico borderlands Thematic Mapper selection is designed to be utilized as fundamental part of a basic geographic information system database for natural resource, environmental, and land-management studies.
The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the global land area decadally since the early 1970s. The global mosaics are centered on 1975, 1990, 2000, 2005, and 2010, and consist of data acquired from five sensors: Operational Land Imager, Enhanced Thematic Mapper Plus, Thematic Mapper, Multispectral Scanner, and Advanced Land Imager. This newest version combines all of the GLS data into one collection which has all of the combined collections. The GLS datasets have been widely used in land-cover and land-use change studies at local, regional, and global scales. This study evaluates the GLS datasets with respect to their spatial coverage, temporal consistency, geodetic accuracy, radiometric calibration consistency, image completeness, extent of cloud contamination, and residual gaps. The datasets have been improved in order to give spatial continuity across all decadal collections. Most of the imagery (85%) having cloud cover of less than 10%, the acquisition years clustered much more tightly around their target years, better co-registration relative to GLS-2000, and better radiometric absolute calibration. Probably, the most significant impediment to scientific use of the datasets is the variability of image phenology (i.e., acquisition day of year). This collection provides end-users with an assessment of the quality of the GLS datasets for specific applications, and where possible, suggestions for mitigating their deficiencies.
Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.
This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range. This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.For more information on each of the individual layers, see http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ; http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ; http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6
On February 24, 1995, President Clinton signed an Executive Order, directing the declassification of intelligence imagery acquired by the first generation of United States photo-reconnaissance satellites, including the systems code-named CORONA, ARGON, and LANYARD. More than 860,000 images of the Earth's surface, collected between 1960 and 1972, were declassified with the issuance of this Executive Order. Image collection was driven, in part, by the need to confirm purported developments in then-Soviet strategic missile capabilities. The images also were used to produce maps and charts for the Department of Defense and for other Federal Government mapping programs. In addition to the images, documents and reports (collateral information) are available, pertaining to frame ephemeris data, orbital ephemeris data, and mission performance. Document availability varies by mission; documentation was not produced for unsuccessful missions.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release provides satellite images used to test a method for inferring image acquisition time from shadow orientation. For many applications, such as linking remotely sensed data to streamflow recorded at a gaging station, knowing the time an image is acquired is important, but such metadata often is not available. The sundial method is a simple means of inferring image acquisition time from shadow orientation. Images with known acquisition times are used to test the approach. The file SundialDataRelease.csv contains image metadata, shadow measurements, and inferred image acquisition times based on the sundial method. The difference between the known acquisition times of the satellite images and those inferred via the sundial technique is used to assess the accuracy of the method. Please refer to the entity and attribute section of the metadata for further detail regarding this file. The file SundialImages.zip contains 16 WorldView satellite images with known acquisition ...
This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.
Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).
Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.
The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.
Landsat 8 Collection 2 Tier 2 calibrated top-of-atmosphere (TOA) reflectance. Calibration coefficients are extracted from the image metadata. See Chander et al. (2009) for details on the TOA computation. Scenes not meeting Tier 1 criteria during processing are assigned to Tier 2. This includes Systematic terrain (L1GT) and Systematic (L1GS) processed scenes, as well as any L1TP scenes that do not meet the Tier 1 specifications due to significant cloud cover, insufficient ground control, and other factors. Users interested in Tier 2 scenes can analyze the RMSE and other properties to determine the suitability for use in individual applications and studies. See more information in the USGS docs.
The Satellite View of the Conterminous United States, with Shaded Relief map layer is a 200-meter-resolution simulated-natural-color image of the United States. Vegetation is generally green, with forests in darker green and grasslands or shrublands in lighter green. Areas of high reflectance, including urban areas, rock, and dry bare soil, are shown in shades of pink. Very bright areas, such as snow and ice, are colored blue. The image was produced by combining Landsat Thematic Mapper (TM) imagery from the Landsat 4 and Landsat 5 satellites with relief enhanced by shading. This map layer was previously distributed as Satellite View of the Conterminous United States.
Multispectral satellite image data from the upper Sacramento River in northern California were acquired on October 18, 2017, to support research on remote sensing of rivers, particularly retrieval of water depth, and to facilitate efforts to characterize salmon habitat conditions and geomorphic change along the upper Sacramento River. These data were collected by the WorldView-3 (WV3) satellite, operated by DigitalGlobe and obtained through the EnhancedView license program administered by the National Geospatial-Intelligence Agency (NGA); the image data remain copyright of DigitalGlobe (2018). DigitalGlobe performed initial radiometric and geometric processing of the image. The data were acquired from the WorldView-3 satellite from an orbit with an altitude of 617 km and have a spatial resolution (pixel size) of 1.36 m. The data set consists of 8 spectral bands spanning the visible and near infrared wavelength range from 400-954 nanometers. The image pixel values represent raw digital counts and conversion to radiance, atmospheric correction, and reflectance retrieval have not been performed for the image included in this data release. The image is in a GeoTIFF format with pixel values stored as 16-bit unsigned integers. The image provided in this data release is a subset focused on the reach of the Sacramento River where it is joined by its tributary Cottonwood Creek. Supporting field data from this reach were collected in coordination with the acquisition of the remotely sensed data.
Landsat 5 TM Collection 2 Tier 2 calibrated top-of-atmosphere (TOA) reflectance. Calibration coefficients are extracted from the image metadata. See Chander et al. (2009) for details on the TOA computation.
Three ET datasets were generated to evaluate the potential integration of Landsat and Sentinel-2 data for improved ET mapping. The first ET dataset was generated by linear interpolation (Lint) of Landsat-based ET fraction (ETf) images of before and after the selected image dates. The second ET dataset was generated using the regular SSEBop approach using the Landsat image only (Lonly). The third ET dataset was generated from the proposed Landsat-Sentinel data fusion (L-S) approach by applying ETf images from Landsat and Sentinel. The scripts (two) used to generate these three ET datasets are included – one script for processing SSEBop model to generate ET maps from Lonly and another script for generating ET maps from Lint and L-S approach.
EarthExplorerUse the USGS EarthExplorer (EE) to search, download, and order satellite images, aerial photographs, and cartographic products. In addition to data from the Landsat missions and a variety of other data providers, EE provides access to MODIS land data products from the NASA Terra and Aqua missions, and ASTER level-1B data products over the U.S. and Territories from the NASA ASTER mission. Registered users of EE have access to more features than guest users.Earth Explorer Distribution DownloadThe EarthExplorer user interface is an online search, discovery, and ordering tool developed by the United States Geological Survey (USGS). EarthExplorer supports the searching of satellite, aircraft, and other remote sensing inventories through interactive and textual-based query capabilities. Through the interface, users can identify search areas, datasets, and display metadata, browse and integrated visual services within the interface.The distributable version of EarthExplorer provides the basic software to provide this functionality. Users are responsible for verification of system recommendations for hosting the application on your own servers. By default, this version of our code is not hooked up to a data source so you will have to integrate the interface with your data. Integration options include service-based API's, databases, and anything else that stores data. To integrate with a data source simply replace the contents of the 'getDataset' and 'search' functions in the CWIC.php file.Distribution is being provided due to users requests for the codebase. The EarthExplorer source code is provided "As Is", without a warranty or support of any kind. The software is in the public domain; it is available to any government or private institution.The software code base is managed through the USGS Configuration Management Board. The software is managed through an automated configuration management tool that updates the code base when new major releases have been thoroughly reviewed and tested.Link: https://earthexplorer.usgs.gov/