33 datasets found
  1. School District Characteristics and Socioeconomic Information (Web Map)

    • hub.arcgis.com
    Updated Aug 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2022). School District Characteristics and Socioeconomic Information (Web Map) [Dataset]. https://hub.arcgis.com/maps/ba1dd52b501c4c82a24e02b5f95916df
    Explore at:
    Dataset updated
    Aug 6, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This web map provides and in-depth look at school districts within the United States. Clicking on a school district in the map will reveal different statistics about each district in the pop-up. The statistics presented in this map are approximations based on summarizing American Community Survey(ACS) data using tract centroids. They may differ from published statistics by school districts found on data.census.gov. A few things you will learn from this map:How many public and private schools fall within a district?Socioeconomic factors about the Census Tracts which fall within the district:School enrollment for grades Kindergarten through 12thDisconnected children in the districtChildren living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of population under the age of 19 in the districtFor more information about the data sources:This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases estimates, so values in the map always reflect the newest data available.Current School Districts Layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Public Schools Layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.Private Schools Layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Web Map originally owned by Summers Cleary

  2. National Neighborhood Data Archive (NaNDA): Neighborhood-School Gap by...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Nov 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gomez-Lopez, Iris; Kim, Min Hee; Li, Mao; Sylvers, Dominique; Esposito, Michael; Clarke, Philippa; Chenoweth, Megan (2022). National Neighborhood Data Archive (NaNDA): Neighborhood-School Gap by Census Tract and ZIP Code Tabulation Area, United States, 2009-2010 and 2015-2016 [Dataset]. http://doi.org/10.3886/ICPSR38579.v2
    Explore at:
    r, sas, delimited, spss, stata, asciiAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Gomez-Lopez, Iris; Kim, Min Hee; Li, Mao; Sylvers, Dominique; Esposito, Michael; Clarke, Philippa; Chenoweth, Megan
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38579/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38579/terms

    Time period covered
    2009 - 2010
    Area covered
    United States
    Description

    This study contains measures of neighborhood-school gap for 2009-2010 and 2015-2016. Neighborhood-school gap (NS gap) refers to the discrepancy between the demographics of a public school and its surrounding community. For example, if 60 percent of a school's student body is Black, but 30 percent of the neighborhood population is Black, the school has a positive Black neighborhood-school gap. These datasets measure gaps in race and poverty between elementary school student populations and the census tracts and ZIP code tabulation areas (ZCTAs) that those elementary schools serve. Data is at the census tract and ZCTA level. Supplemental data containing component variables used to calculate NS gap at the school and block group level is also available.

  3. National Neighborhood Data Archive (NaNDA): School District Characteristics...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Oct 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kim, Min Hee; Li, Mao; Sylvers, Dominique; Esposito, Michael; Gomez-Lopez, Iris; Clarke, Philippa; Chenoweth, Megan (2022). National Neighborhood Data Archive (NaNDA): School District Characteristics and School Counts by Census Tract, ZIP Code Tabulation Area, and School District, 2000-2018 [Dataset]. http://doi.org/10.3886/ICPSR38569.v1
    Explore at:
    ascii, delimited, sas, stata, spss, rAvailable download formats
    Dataset updated
    Oct 10, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Kim, Min Hee; Li, Mao; Sylvers, Dominique; Esposito, Michael; Gomez-Lopez, Iris; Clarke, Philippa; Chenoweth, Megan
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38569/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38569/terms

    Time period covered
    2000 - 2018
    Area covered
    United States
    Description

    This study contains counts of schools per United States census tract, ZIP code tabulation area (ZCTA), and school district from 2000 through 2018. Counts are broken down by type of school (public, charter, magnet, or private) and grade level (elementary, middle, or high). At the school district level, additional data are available on school characteristics such as district-level enrollment by race and ethnicity; numbers of teachers and counselors; teacher-student ratios; and expenditures and revenue, including per-pupil revenue.

  4. o

    National Neighborhood Data Archive (NaNDA): Education and Training Services...

    • openicpsr.org
    sas, stata
    Updated Nov 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jessica Finlay; Mao Li; Michael Esposito; Iris Gomez-Lopez; Anam Khan; Philippa Clarke; Megan Chenoweth (2019). National Neighborhood Data Archive (NaNDA): Education and Training Services by Census Tract, United States, 2003-2017 [Dataset]. http://doi.org/10.3886/E127681V1
    Explore at:
    sas, stataAvailable download formats
    Dataset updated
    Nov 14, 2019
    Dataset provided by
    University of Michigan Institute for Social Research
    University of Michigan. Institute for Social Research
    Authors
    Jessica Finlay; Mao Li; Michael Esposito; Iris Gomez-Lopez; Anam Khan; Philippa Clarke; Megan Chenoweth
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset contains measures of the number and per capita density of education and training services per United States census tract from 2003 through 2017. This includes traditional education establishments such as elementary schools, secondary schools, and colleges, as well as businesses offering specialized training such as art classes, driving instruction, computer training, and standardized test preparation.

  5. School Enrollment (by Census Tract) 2019

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). School Enrollment (by Census Tract) 2019 [Dataset]. https://gisdata.fultoncountyga.gov/maps/GARC::school-enrollment-by-census-tract-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  6. o

    National Neighborhood Data Archive (NaNDA): School Counts by Census Tract,...

    • openicpsr.org
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Min Hee Kim; Mao Li; Dominique Sylvers; Michael Esposito; Iris Gomez-Lopez; Philippa Clarke; Megan Chenoweth (2021). National Neighborhood Data Archive (NaNDA): School Counts by Census Tract, United States, 2000-2018 [Dataset]. http://doi.org/10.3886/E156024V1
    Explore at:
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    University of Michigan. Institute for Social Research
    University of California San Francisco Philip R. Lee Institute for Health Policy Studies
    Washington University in St. Louis
    Authors
    Min Hee Kim; Mao Li; Dominique Sylvers; Michael Esposito; Iris Gomez-Lopez; Philippa Clarke; Megan Chenoweth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2018
    Area covered
    United States
    Description

    This dataset contains counts of schools per United States census tract from 2000 through 2018. Counts are broken down by type of school (public, charter, magnet, or private) and grade level (elementary, middle, or high).A curated version of this data is available through ICPSR at https://doi.org/10.3886/ICPSR38569.v1

  7. a

    Oklahoma Census Tract Shapefile - TIGER 2019

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated Apr 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). Oklahoma Census Tract Shapefile - TIGER 2019 [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/items/f14b5621a2604d228bf17bdfdb8db54f
    Explore at:
    Dataset updated
    Apr 14, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    This shapefile includes attributes associated with each census tract, such as population demographics, socio-economic characteristics, housing information, and more. These attributes enable detailed spatial analysis and visualization, allowing researchers and analysts to explore localized patterns and trends within Oklahoma.Here are some common uses of the Census Tract shapefile:Demographic Analysis: Researchers can analyze population demographics at a very localized level, identifying demographic trends, disparities, and concentrations within and across census tracts.Social and Economic Research: Socio-economic indicators such as income, education level, employment status, and housing conditions can be analyzed in conjunction with census tract boundaries to understand social and economic dynamics within communities.Healthcare Planning: Public health officials and researchers can use census tract data to assess healthcare access, disease prevalence, and healthcare resource allocation at a community level.Urban Planning: Urban planners can utilize census tract boundaries to analyze land use patterns, transportation networks, and infrastructure development within urban areas.Market Analysis: Businesses and market analysts can leverage census tract data to identify target markets, assess consumer behavior, and make informed decisions regarding market strategies and location-based investments.Overall, the Census Tract shapefile for Oklahoma serves as a vital resource for understanding the demographic, social, and economic characteristics of local communities, facilitating evidence-based decision-making and policy formulation at a highly localized level.

  8. Educational Attainment (by Zip Code) 2019

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Educational Attainment (by Zip Code) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/educational-attainment-by-zip-code-2019
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  9. Educational Attainment (by Neighborhood Statistical Areas) 2017

    • opendata.atlantaregional.com
    Updated Jun 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Educational Attainment (by Neighborhood Statistical Areas) 2017 [Dataset]. https://opendata.atlantaregional.com/datasets/educational-attainment-by-neighborhood-statistical-areas-2017/api
    Explore at:
    Dataset updated
    Jun 24, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show levels of educational attainment by Neighborhood Statistical Areas in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes: SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NamePop25P_e# Population 25 years and over, 2017Pop25P_m# Population 25 years and over, 2017 (MOE)NoHS_e# Population 25 years and over, less than 9th grade education, 2017NoHS_m# Population 25 years and over, less than 9th grade education, 2017 (MOE)pNoHS_e% Population 25 years and over, less than 9th grade education, 2017pNoHS_m% Population 25 years and over, less than 9th grade education, 2017 (MOE)SomeHS_e# Population 25 years and over, 9th-12th grade, no diploma, 2017SomeHS_m# Population 25 years and over, 9th-12th grade, no diploma, 2017 (MOE)pSomeHS_e% Population 25 years and over, 9th-12th grade, no diploma, 2017pSomeHS_m% Population 25 years and over, 9th-12th grade, no diploma, 2017 (MOE)HSGrad_e# Population 25 years and over, high school graduate (includes GED), 2017HSGrad_m# Population 25 years and over, high school graduate (includes GED), 2017 (MOE)pHSGrad_e% Population 25 years and over, high school graduate (includes GED), 2017pHSGrad_m% Population 25 years and over, high school graduate (includes GED), 2017 (MOE)SomeColl_e# Population 25 years and over, some college, no degree, 2017SomeColl_m# Population 25 years and over, some college, no degree, 2017 (MOE)pSomeColl_e% Population 25 years and over, some college, no degree, 2017pSomeColl_m% Population 25 years and over, some college, no degree, 2017 (MOE)Associates_e# Population 25 years and over, associate's degree, 2017Associates_m# Population 25 years and over, associate's degree, 2017 (MOE)pAssociates_e% Population 25 years and over, associate's degree, 2017pAssociates_m% Population 25 years and over, associate's degree, 2017 (MOE)BA_e# Population 25 years and over, bachelor's degree, 2017BA_m# Population 25 years and over, bachelor's degree, 2017 (MOE)pBA_e% Population 25 years and over, bachelor's degree, 2017pBA_m% Population 25 years and over, bachelor's degree, 2017 (MOE)GradProf_e# Population 25 years and over, graduate or professional degree, 2017GradProf_m# Population 25 years and over, graduate or professional degree, 2017 (MOE)pGradProf_e% Population 25 years and over, graduate or professional degree, 2017pGradProf_m% Population 25 years and over, graduate or professional degree, 2017 (MOE)LtHS_e# Population 25 years and over, Less than high school graduate, 2017LtHS_m# Population 25 years and over, Less than high school graduate, 2017 (MOE)pLtHS_e% Population 25 years and over, Less than high school graduate, 2017pLtHS_m% Population 25 years and over, Less than high school graduate, 2017 (MOE)HSPlus_e# Population 25 years and over, high school graduate or higher, 2017HSPlus_m# Population 25 years and over, high school graduate or higher, 2017 (MOE)pHSPlus_e% Population 25 years and over, high school graduate or higher, 2017pHSPlus_m% Population 25 years and over, high school graduate or higher, 2017 (MOE)BAPlus_e# Population 25 years and over, bachelor's degree or higher, 2017BAPlus_m# Population 25 years and over, bachelor's degree or higher, 2017 (MOE)pBAPlus_e% Population 25 years and over, bachelor's degree or higher, 2017pBAPlus_m% Population 25 years and over, bachelor's degree or higher, 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.

  10. a

    2018 ACS Demographic & Socio-Economic Data Of USA At Census Tract Level

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2018 ACS Demographic & Socio-Economic Data Of USA At Census Tract Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/datasets/5b67f243e6584ef1986f815932020034
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at the census tract level, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsLocalized Interventions: Facilitates the development of localized interventions to address the needs of vulnerable populations within specific census tracts.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability at the census tract level.Research: Provides a detailed dataset for academic and applied research in socio-economic and demographic studies at a granular census tract level.Community Planning: Supports the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities within specific census tract areas.Note: Due to limitations in the data environment, variable names may be truncated. Refer to the provided table for a clear understanding of the variables.CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2014-2018 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2014-2018 ACSEP_PCIEP_PCIPer capita income estimate, 2014-2018 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2014-2018 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2014-2018 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2014-2018 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2014-2018 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computer

  11. Los Angeles Family and Neighborhood Survey (L.A.FANS), Wave 2, Restricted...

    • icpsr.umich.edu
    Updated Apr 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pebley, Anne R.; Sastry, Narayan (2019). Los Angeles Family and Neighborhood Survey (L.A.FANS), Wave 2, Restricted Data Version 3, 2006-2008 [Dataset]. http://doi.org/10.3886/ICPSR37267.v1
    Explore at:
    Dataset updated
    Apr 8, 2019
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Pebley, Anne R.; Sastry, Narayan
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/37267/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37267/terms

    Time period covered
    2006 - 2008
    Area covered
    Los Angeles, California, United States
    Description

    This study includes a restricted data file, version 3, for Wave 2 of the L.A.FANS data. To compare L.A.FANS restricted data, version 3 with other restricted data versions, see the table on the series page for the L.A.FANS data here. Data in this study are designed for use with the public use data files for L.A.FANS, Wave 2 (study 2). This file adds only a few variables to the L.A.FANS, Wave 2 public use files. Specifically, it adds the census tract and block number for the tract each respondent lives in and geographic coordinates data for a number of locations reported by the respondent (including home, grocery store, place of work, place of worship, schools, etc.). It also includes certain variables, thought to be sensitive, which are not available in the public use data. These variables are identified in the L.A.FANS Wave 2 Users Guide and Codebook. Finally, some distance variables and individual characteristics which are treated in the public use data to make it harder to identify individuals are provided in an untreated form in the Version 3 restricted data file. Please note that L.A. FANS restricted data may only be accessed within the ICPSR Virtual Data Enclave (VDE) and must be merged with the L.A. FANS public data prior to beginning any analysis. A Users' Guide which explains the design and how to use the samples are available for Wave 2 at the RAND website. Additional information on the project, survey design, sample, and variables are available from: Sastry, Narayan, Bonnie Ghosh-Dastidar, John Adams, and Anne R. Pebley (2006). The Design of a Multilevel Survey of Children, Families, and Communities: The Los Angeles Family and Neighborhood Survey, Social Science Research, Volume 35, Number 4, Pages 1000-1024 The Users' Guides (Wave 1 and Wave 2) RAND Documentation Reports page

  12. Educational Attainment (by Westside Future Fund) 2017

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Jun 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Educational Attainment (by Westside Future Fund) 2017 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::educational-attainment-by-westside-future-fund-2017/data
    Explore at:
    Dataset updated
    Jun 24, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show levels of educational attainment by Westside Future Fund in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes: SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NamePop25P_e# Population 25 years and over, 2017Pop25P_m# Population 25 years and over, 2017 (MOE)NoHS_e# Population 25 years and over, less than 9th grade education, 2017NoHS_m# Population 25 years and over, less than 9th grade education, 2017 (MOE)pNoHS_e% Population 25 years and over, less than 9th grade education, 2017pNoHS_m% Population 25 years and over, less than 9th grade education, 2017 (MOE)SomeHS_e# Population 25 years and over, 9th-12th grade, no diploma, 2017SomeHS_m# Population 25 years and over, 9th-12th grade, no diploma, 2017 (MOE)pSomeHS_e% Population 25 years and over, 9th-12th grade, no diploma, 2017pSomeHS_m% Population 25 years and over, 9th-12th grade, no diploma, 2017 (MOE)HSGrad_e# Population 25 years and over, high school graduate (includes GED), 2017HSGrad_m# Population 25 years and over, high school graduate (includes GED), 2017 (MOE)pHSGrad_e% Population 25 years and over, high school graduate (includes GED), 2017pHSGrad_m% Population 25 years and over, high school graduate (includes GED), 2017 (MOE)SomeColl_e# Population 25 years and over, some college, no degree, 2017SomeColl_m# Population 25 years and over, some college, no degree, 2017 (MOE)pSomeColl_e% Population 25 years and over, some college, no degree, 2017pSomeColl_m% Population 25 years and over, some college, no degree, 2017 (MOE)Associates_e# Population 25 years and over, associate's degree, 2017Associates_m# Population 25 years and over, associate's degree, 2017 (MOE)pAssociates_e% Population 25 years and over, associate's degree, 2017pAssociates_m% Population 25 years and over, associate's degree, 2017 (MOE)BA_e# Population 25 years and over, bachelor's degree, 2017BA_m# Population 25 years and over, bachelor's degree, 2017 (MOE)pBA_e% Population 25 years and over, bachelor's degree, 2017pBA_m% Population 25 years and over, bachelor's degree, 2017 (MOE)GradProf_e# Population 25 years and over, graduate or professional degree, 2017GradProf_m# Population 25 years and over, graduate or professional degree, 2017 (MOE)pGradProf_e% Population 25 years and over, graduate or professional degree, 2017pGradProf_m% Population 25 years and over, graduate or professional degree, 2017 (MOE)LtHS_e# Population 25 years and over, Less than high school graduate, 2017LtHS_m# Population 25 years and over, Less than high school graduate, 2017 (MOE)pLtHS_e% Population 25 years and over, Less than high school graduate, 2017pLtHS_m% Population 25 years and over, Less than high school graduate, 2017 (MOE)HSPlus_e# Population 25 years and over, high school graduate or higher, 2017HSPlus_m# Population 25 years and over, high school graduate or higher, 2017 (MOE)pHSPlus_e% Population 25 years and over, high school graduate or higher, 2017pHSPlus_m% Population 25 years and over, high school graduate or higher, 2017 (MOE)BAPlus_e# Population 25 years and over, bachelor's degree or higher, 2017BAPlus_m# Population 25 years and over, bachelor's degree or higher, 2017 (MOE)pBAPlus_e% Population 25 years and over, bachelor's degree or higher, 2017pBAPlus_m% Population 25 years and over, bachelor's degree or higher, 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.

  13. d

    Demographics for US Census Tracts - 2012 (American Community Survey...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Jul 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2024). Demographics for US Census Tracts - 2012 (American Community Survey 2008-2012 Derived Summary Tables) [Dataset]. https://catalog.data.gov/dataset/demographics-for-us-census-tracts-2012-american-community-survey-2008-2012-derived-summary-tabl8
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    United States
    Description

    This map service displays data derived from the 2008-2012 American Community Survey (ACS). Values derived from the ACS and used for this map service include: Total Population, Population Density (per square mile), Percent Minority, Percent Below Poverty Level, Percent Age (less than 5, less than 18, and greater than 64), Percent Housing Units Built Before 1950, Percent (population) 25 years and over (with less than a High School Degree and with a High School Degree), Percent Linguistically Isolated Households, Population of American Indians and Alaskan Natives, Population of American Indians and Alaskan Natives Below Poverty Level, and Percent Low Income Population (Less Than 2X Poverty Level). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States.

  14. Educational Attainment 2023 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Educational Attainment 2023 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/ced69c605ef24c5089aa999ef82790c0
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  15. Census1960Table2

    • search.dataone.org
    Updated Oct 14, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne (2013). Census1960Table2 [Dataset]. https://search.dataone.org/view/knb-lter-bes.7.570
    Explore at:
    Dataset updated
    Oct 14, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    This data collection contains selected variables at the tract level from the 1960 Census of Population and Housing. Census tracts are statistical subdivisions, most of which are within Standard Metropolitan Statistical Areas (SMSAs). Tracts were originally designed to be relatively homogenous with respect to population characteristics, economic status, and living conditions. This tables includes some of the census data for Maryland, including the housing occupants' family structure, ages, basic racial categories, origins if foreign-born, child custody information, and education levels. Coverage includes the following counties: Anne Arundel, Baltimore, Baltimore City, Caroll, Howard, Prince George's. Data were extracted from 1960 Census Tract-Level Data from the Inter-university Consortium for Political and Social Science Research site. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.

  16. c

    Neighborhood Deprivation Index for year 2015, using the 2010 census...

    • cehidatahub.org
    Updated Apr 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEHI (2015). Neighborhood Deprivation Index for year 2015, using the 2010 census geographic boundaries [Dataset]. http://doi.org/10.25614/ndi_2015_trt_allstates
    Explore at:
    Dataset updated
    Apr 1, 2015
    Dataset authored and provided by
    CEHI
    License

    https://www.cehidatahub.org/licensehttps://www.cehidatahub.org/license

    Time period covered
    Apr 1, 2015
    Area covered
    USA
    Description

    The NDI provides a measure of neighborhood deprivation at the census tract level, with higher values corresponding to more severe deprivation. Each state's values are analyzed independently. The NDI empirically summarizes eight census variables representing five domains: income/poverty, education, employment, housing, and occupation. The eight census variables include the percent of: (1) males in management and professional occupations; (2) crowded housing; (3) households in poverty; (4) female-headed households with dependents; (5) households on public assistance; (6) households with earnings less than $30,000 per year; (7) individuals with less than a high school education; and (8) individuals that are unemployed. The NDI is calculated using a principal components analysis (Messer et al. 2006), such that the NDI values produced depend on the study area that is used in the NDI calculation. Specifically, the NDI value calculated for a given census tract will differ if the NDI was calculated using, for example, all tracts in the county vs. all tracts in the state vs. all tracts in the United States. Prior to selecting, calculating, or using the NDI, it is critically important to define the study area and analytical goals so that the most appropriate study domain is used for the NDI calculation.

  17. School Enrollment (by Neighborhood Planning Units S, T, and V) 2017

    • gisdata.fultoncountyga.gov
    Updated Jun 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). School Enrollment (by Neighborhood Planning Units S, T, and V) 2017 [Dataset]. https://gisdata.fultoncountyga.gov/maps/c27579930b3e4c48b06dfc1e91f1c193
    Explore at:
    Dataset updated
    Jun 25, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show counts and percentages for school enrollment by education level by Neighborhood Planning Units S, T, and V in the Atlanta region.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    Suffixes:

    None

    Change over two periods

    _e

    Estimate from most recent ACS

    _m

    Margin of Error from most recent ACS

    _00

    Decennial 2000

    Attributes:

    SumLevel

    Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)

    GEOID

    Census tract Federal Information Processing Series (FIPS) code

    NAME

    Name of geographic unit

    Planning_Region

    Planning region designation for ARC purposes

    Acres

    Total area within the tract (in acres)

    SqMi

    Total area within the tract (in square miles)

    County

    County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)

    CountyName

    County Name

    Pop3P_e

    # Population ages 3 and over, 2017

    Pop3P_m

    # Population ages 3 and over, 2017 (MOE)

    InSchool_e

    # Population 3 years and over enrolled in school, 2017

    InSchool_m

    # Population 3 years and over enrolled in school, 2017 (MOE)

    InPreSchool_e

    # Enrolled in nursery school, preschool, 2017

    InPreSchool_m

    # Enrolled in nursery school, preschool, 2017 (MOE)

    pInPreSchool_e

    % Enrolled in nursery school, preschool, 2017

    pInPreSchool_m

    % Enrolled in nursery school, preschool, 2017 (MOE)

    InKindergarten_e

    # Enrolled in kindergarten, 2017

    InKindergarten_m

    # Enrolled in kindergarten, 2017 (MOE)

    pInKindergarten_e

    % Enrolled in kindergarten, 2017

    pInKindergarten_m

    % Enrolled in kindergarten, 2017 (MOE)

    InElementary_e

    # Enrolled in elementary school (grades 1-8), 2017

    InElementary_m

    # Enrolled in elementary school (grades 1-8), 2017 (MOE)

    pInElementary_e

    % Enrolled in elementary school (grades 1-8), 2017

    pInElementary_m

    % Enrolled in elementary school (grades 1-8), 2017 (MOE)

    InHS_e

    # Enrolled in high school (grades 9-12), 2017

    InHS_m

    # Enrolled in high school (grades 9-12), 2017 (MOE)

    pInHS_e

    % Enrolled in high school (grades 9-12), 2017

    pInHS_m

    % Enrolled in high school (grades 9-12), 2017 (MOE)

    InCollegeGradSch_e

    # Enrolled in college or graduate school, 2017

    InCollegeGradSch_m

    # Enrolled in college or graduate school, 2017 (MOE)

    last_edited_date

    Last date the feature was edited by ARC

    Source: U.S. Census Bureau, Atlanta Regional Commission

    Date: 2013-2017

    For additional information, please visit the Census ACS website.

  18. o

    Data from: Assessing School Communities Using Google Street View: A Virtual...

    • openicpsr.org
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dana McCoy; Terri Sabol (2022). Assessing School Communities Using Google Street View: A Virtual Systematic Social Observation Approach [Dataset]. http://doi.org/10.3886/E162621V2
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Harvard Graduate School of Education
    Northwestern University
    Authors
    Dana McCoy; Terri Sabol
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2007 - 2009
    Area covered
    United States
    Description

    Little research in education has focused on school neighborhoods. We employ a novel systematic social observation tool – the internet-based School Neighborhood Assessment Protocol (iSNAP) – within Google Street View to quantify the physical characteristics of 291 preschool communities in nine US cities. We find low to moderate correlations (r = -.03 to -.57) between iSNAP subscales and Census tract poverty, density, and crime, suggesting that the characteristics captured by the iSNAP are related to yet ultimately distinct from existing neighborhood structural measures. We find few positive associations between iSNAP community characteristics and 1,230 low-income preschoolers’ end-of-year outcomes. Specifically, resources for outdoor play (e.g., playgrounds, open fields) on school grounds predicted stronger child self-regulation skills, whereas global ratings of safety and care for both the school grounds and surrounding neighborhood predicted stronger approaches to learning skills. Indicators of physical order were not associated with child outcomes.

  19. f

    Individual educational attainment prediction model performance.

    • plos.figshare.com
    xls
    Updated Feb 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kullaya Takkavatakarn; Yang Dai; Huei Hsun Wen; Justin Kauffman; Alexander Charney; Steven G. Coca; Girish N. Nadkarni; Lili Chan (2024). Individual educational attainment prediction model performance. [Dataset]. http://doi.org/10.1371/journal.pone.0297919.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Kullaya Takkavatakarn; Yang Dai; Huei Hsun Wen; Justin Kauffman; Alexander Charney; Steven G. Coca; Girish N. Nadkarni; Lili Chan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Individual educational attainment prediction model performance.

  20. a

    2020 ACS Demographic & Socio-Economic Data Of Oklahoma At Census Tract Level...

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2020 ACS Demographic & Socio-Economic Data Of Oklahoma At Census Tract Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/items/cf38f8a63cc649779740f403a6552081
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    we utilized data from two main sources: the United States Census Bureau's American Community Survey (ACS) and the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (CDC/ATSDR) Social Vulnerability Index (SVI).American Community Survey (ACS):Conducted by the U.S. Census Bureau, the ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.It offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.The ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) and utilized by the CDC, the SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themesEach tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.SVI data provides insights into the social vulnerability of communities at both the tract and county levels, helping public health officials and emergency response planners allocate resources effectively. In our utilization of these sources, we likely integrated data from both the ACS and the SVI to analyze and understand various socio-economic and demographic indicators at the state, county, and possibly tract levels. This integrated data would have been valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United StatesNote: Due to limitations in the ArcGIS Pro environment, the data variable names may be truncated. Refer to the provided table for a clear understanding of the variables.CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2014-2018 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2015-2019 ACSEP_PCIEP_PCIPer capita income estimate, 2015-2019 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2015-2019 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2015-2019 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2015-2019 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2015-2019 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computerThis table provides a mapping between the CSV variable names and the shapefile variable names, along with a brief description of each variable.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Urban Observatory by Esri (2022). School District Characteristics and Socioeconomic Information (Web Map) [Dataset]. https://hub.arcgis.com/maps/ba1dd52b501c4c82a24e02b5f95916df
Organization logo

School District Characteristics and Socioeconomic Information (Web Map)

Explore at:
Dataset updated
Aug 6, 2022
Dataset provided by
Esrihttp://esri.com/
Authors
Urban Observatory by Esri
Area covered
Description

This web map provides and in-depth look at school districts within the United States. Clicking on a school district in the map will reveal different statistics about each district in the pop-up. The statistics presented in this map are approximations based on summarizing American Community Survey(ACS) data using tract centroids. They may differ from published statistics by school districts found on data.census.gov. A few things you will learn from this map:How many public and private schools fall within a district?Socioeconomic factors about the Census Tracts which fall within the district:School enrollment for grades Kindergarten through 12thDisconnected children in the districtChildren living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of population under the age of 19 in the districtFor more information about the data sources:This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases estimates, so values in the map always reflect the newest data available.Current School Districts Layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Public Schools Layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.Private Schools Layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Web Map originally owned by Summers Cleary

Search
Clear search
Close search
Google apps
Main menu