5 datasets found
  1. f

    Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene...

    • frontiersin.figshare.com
    docx
    Updated Mar 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder (2024). Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene expression during evolution.docx [Dataset]. http://doi.org/10.3389/feduc.2024.1379910.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 22, 2024
    Dataset provided by
    Frontiers
    Authors
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As high-throughput methods become more common, training undergraduates to analyze data must include having them generate informative summaries of large datasets. This flexible case study provides an opportunity for undergraduate students to become familiar with the capabilities of R programming in the context of high-throughput evolutionary data collected using macroarrays. The story line introduces a recent graduate hired at a biotech firm and tasked with analysis and visualization of changes in gene expression from 20,000 generations of the Lenski Lab’s Long-Term Evolution Experiment (LTEE). Our main character is not familiar with R and is guided by a coworker to learn about this platform. Initially this involves a step-by-step analysis of the small Iris dataset built into R which includes sepal and petal length of three species of irises. Practice calculating summary statistics and correlations, and making histograms and scatter plots, prepares the protagonist to perform similar analyses with the LTEE dataset. In the LTEE module, students analyze gene expression data from the long-term evolutionary experiments, developing their skills in manipulating and interpreting large scientific datasets through visualizations and statistical analysis. Prerequisite knowledge is basic statistics, the Central Dogma, and basic evolutionary principles. The Iris module provides hands-on experience using R programming to explore and visualize a simple dataset; it can be used independently as an introduction to R for biological data or skipped if students already have some experience with R. Both modules emphasize understanding the utility of R, rather than creation of original code. Pilot testing showed the case study was well-received by students and faculty, who described it as a clear introduction to R and appreciated the value of R for visualizing and analyzing large datasets.

  2. r

    Data from: Working with a linguistic corpus using R: An introductory note...

    • researchdata.edu.au
    • bridges.monash.edu
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg; I Made Rajeg; Karlina Denistia (2022). Working with a linguistic corpus using R: An introductory note with Indonesian Negating Construction [Dataset]. http://doi.org/10.4225/03/5a7ee2ac84303
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg; I Made Rajeg; Karlina Denistia
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This is a repository for codes and datasets for the open-access paper in Linguistik Indonesia, the flagship journal for the Linguistic Society of Indonesia (Masyarakat Linguistik Indonesia [MLI]) (cf. the link in the references below).


    To cite the paper (in APA 6th style):

    Rajeg, G. P. W., Denistia, K., & Rajeg, I. M. (2018). Working with a linguistic corpus using R: An introductory note with Indonesian negating construction. Linguistik Indonesia, 36(1), 1–36. doi: 10.26499/li.v36i1.71


    To cite this repository:
    Click on the Cite (dark-pink button on the top-left) and select the citation style through the dropdown button (default style is Datacite option (right-hand side)

    This repository consists of the following files:
    1. Source R Markdown Notebook (.Rmd file) used to write the paper and containing the R codes to generate the analyses in the paper.
    2. Tutorial to download the Leipzig Corpus file used in the paper. It is freely available on the Leipzig Corpora Collection Download page.
    3. Accompanying datasets as images and .rds format so that all code-chunks in the R Markdown file can be run.
    4. BibLaTeX and .csl files for the referencing and bibliography (with APA 6th style).
    5. A snippet of the R session info after running all codes in the R Markdown file.
    6. RStudio project file (.Rproj). Double click on this file to open an RStudio session associated with the content of this repository. See here and here for details on Project-based workflow in RStudio.
    7. A .docx template file following the basic stylesheet for Linguistik Indonesia

    Put all these files in the same folder (including the downloaded Leipzig corpus file)!

    To render the R Markdown into MS Word document, we use the bookdown R package (Xie, 2018). Make sure this package is installed in R.

    Yihui Xie (2018). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.6.


  3. d

    Mapping a geographic map and a population cartogram side by side using R -...

    • catalogue.data.govt.nz
    Updated May 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Mapping a geographic map and a population cartogram side by side using R - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/oai-figshare-com-article-6267422
    Explore at:
    Dataset updated
    May 15, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This code creates a geographic map and a corresponding population cartogram side by side. They have the same colour coding to facilitate comparison. Users can modify this code to map their own data.

  4. n

    Benchmarking matrix self-cross-products, using R and Python functions

    • narcis.nl
    • data.mendeley.com
    Updated Jun 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nilforooshan, M (via Mendeley Data) (2019). Benchmarking matrix self-cross-products, using R and Python functions [Dataset]. http://doi.org/10.17632/vk8vy7ghnf.1
    Explore at:
    Dataset updated
    Jun 28, 2019
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Nilforooshan, M (via Mendeley Data)
    Description

    Runtime and memory usage of matrix self-cross-products recorded for matrices with 40,000 elements and different dimensions. Native R functions %*% and crossprod, numpy in Python, and two user-defined functions in R and Python were compared.

  5. Statistical Data Analysis using R

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistical Data Analysis using R [Dataset]. https://figshare.com/articles/dataset/Statistical_Data_Analysis_using_R/5501035
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Samuel Barsanelli Costa
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder (2024). Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene expression during evolution.docx [Dataset]. http://doi.org/10.3389/feduc.2024.1379910.s001

Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene expression during evolution.docx

Related Article
Explore at:
docxAvailable download formats
Dataset updated
Mar 22, 2024
Dataset provided by
Frontiers
Authors
Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

As high-throughput methods become more common, training undergraduates to analyze data must include having them generate informative summaries of large datasets. This flexible case study provides an opportunity for undergraduate students to become familiar with the capabilities of R programming in the context of high-throughput evolutionary data collected using macroarrays. The story line introduces a recent graduate hired at a biotech firm and tasked with analysis and visualization of changes in gene expression from 20,000 generations of the Lenski Lab’s Long-Term Evolution Experiment (LTEE). Our main character is not familiar with R and is guided by a coworker to learn about this platform. Initially this involves a step-by-step analysis of the small Iris dataset built into R which includes sepal and petal length of three species of irises. Practice calculating summary statistics and correlations, and making histograms and scatter plots, prepares the protagonist to perform similar analyses with the LTEE dataset. In the LTEE module, students analyze gene expression data from the long-term evolutionary experiments, developing their skills in manipulating and interpreting large scientific datasets through visualizations and statistical analysis. Prerequisite knowledge is basic statistics, the Central Dogma, and basic evolutionary principles. The Iris module provides hands-on experience using R programming to explore and visualize a simple dataset; it can be used independently as an introduction to R for biological data or skipped if students already have some experience with R. Both modules emphasize understanding the utility of R, rather than creation of original code. Pilot testing showed the case study was well-received by students and faculty, who described it as a clear introduction to R and appreciated the value of R for visualizing and analyzing large datasets.

Search
Clear search
Close search
Google apps
Main menu