The development of vaccination by Edward Jenner in 1796 is seen by many as one of the most important and world-changing medical discoveries ever made. Throughout human history, smallpox was responsible for an untold and innumerable share of fatalities, with epidemics devastating countries (and even continents) in their wake; as of 1980, the World Health Organization declared smallpox to be eliminated in nature, making it the only human disease to have been successfully eradicated. If we look at the share of smallpox deaths in England over the nineteenth century, we can see the impact that vaccination had on society during this time. Decline in Britain Within this century, the number of people dying annually from smallpox dropped from 3,000 per million people in the 1700s, to just ten people per million in the 1890s (it is also worth noting that a smallpox pandemic swept across Britain between 1891 and 1893, which caused this number to be higher than it could have been). Mandatory vaccination was not introduced in England until 1853, but by this point the number of smallpox deaths per million people had already fallen to a fraction of its eighteenth century level, and compulsory vaccination reduced these numbers even further.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After October 13, 2022, this dataset will no longer be updated as the related CDC COVID Data Tracker site was retired on October 13, 2022.
This dataset contains historical trends in vaccinations and cases by age group, at the US national level. Data is stratified by at least one dose and fully vaccinated. Data also represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This statistical report, co-authored with the UK Health Security Agency (UKSHA), reports childhood vaccination coverage statistics for England in 2022-23. Data relates to the routine vaccinations offered to all children up to the age of 5 years, derived from the Cover of Vaccination Evaluated Rapidly (COVER). Additional information on children aged 2 and 3 vaccinated against seasonal flu are collected from GPs through UKHSA's ImmForm system.
Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.
On 6/16/2023 CDPH replaced the booster measures with a new “Up to Date” measure based on CDC’s new recommendations, replacing the primary series, boosted, and bivalent booster metrics The definition of “primary series complete” has not changed and is based on previous recommendations that CDC has since simplified. A person cannot complete their primary series with a single dose of an updated vaccine. Whereas the booster measures were calculated using the eligible population as the denominator, the new up to date measure uses the total estimated population. Please note that the rates for some groups may change since the up to date measure is calculated differently than the previous booster and bivalent measures.
This data is from the same source as the Vaccine Progress Dashboard at https://covid19.ca.gov/vaccination-progress-data/ which summarizes vaccination data at the county level by county of residence. Where county of residence was not reported in a vaccination record, the county of provider that vaccinated the resident is included. This applies to less than 1% of vaccination records. The sum of county-level vaccinations does not equal statewide total vaccinations due to out-of-state residents vaccinated in California.
These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.
Totals for the Vaccine Progress Dashboard and this dataset may not match, as the Dashboard totals doses by Report Date and this dataset totals doses by Administration Date. Dose numbers may also change for a particular Administration Date as data is updated.
Previous updates:
On March 3, 2023, with the release of HPI 3.0 in 2022, the previous equity scores have been updated to reflect more recent community survey information. This change represents an improvement to the way CDPH monitors health equity by using the latest and most accurate community data available. The HPI uses a collection of data sources and indicators to calculate a measure of community conditions ranging from the most to the least healthy based on economic, housing, and environmental measures.
Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 16+ and age 5+ denominators have been uploaded as archived tables.
Starting on May 29, 2021 the methodology for calculating on-hand inventory in the shipped/delivered/on-hand dataset has changed. Please see the accompanying data dictionary for details. In addition, this dataset is now down to the ZIP code level.
As seen in the graph, there has been a sharp decline in the number of reported cases of both measles and pertussis (whooping cough) since 1980 as a result of vaccines. This statistic shows the number of reported cases of selected vaccine-preventable diseases worldwide, from 1980 to 2023, by disease.
This statistic displays the share of children who received a first dose and a second dose of Measles, Mumps and Rubella (MMR) immunization in England, from 2003/04 to 2023/24. In the year 2023/24, 83.9 percent of children had received their MMR immunization by their fifth birthday.
The vaccination campaign against COVID-19 in Brazil started on January 2021. Over two years later, around 88 percent of the country's population had received at least one dose of a vaccine against the disease. As of that date, approximately 81.8 percent of Brazilians were fully vaccinated with the recommended amount of doses for immunization. Brazil ranked fifth among Latin American countries with the largest number of COVID-19 vaccination doses per 100 population.
Find the most up-to-date information about the coronavirus pandemic in the world under Statista’s COVID-19 facts and figures site.
This publication corresponds to the Common Data Model (CDM) specification of the Baseline Use Case proposed in T.5.2 (WP5) in the BY-COVID project on “SARS-CoV-2 Vaccine(s) effectiveness in preventing SARS-CoV-2 infection.” Research Question: “How effective have the SARS-CoV-2 vaccination programmes been in preventing SARS-CoV-2 infections?” Intervention (exposure): COVID-19 vaccine(s) Outcome: SARS-CoV-2 infection Subgroup analysis: Vaccination schedule (type of vaccine) Study Design: An observational retrospective longitudinal study to assess the effectiveness of the SARS-CoV-2 vaccine in preventing SARS-CoV-2 infections using routinely collected social, health and care data from several countries. A causal model was established using Directed Acyclic Graphs (DAGs) to map domain knowledge, theories and assumptions about the causal relationship between exposure and outcome. The DAG developed for the research question of interest is shown below. Cohort definition: All people eligible to be vaccinated (from 5 to 115 years old, included) or with, at least, one dose of a SARS-CoV-2 vaccine (any of the available brands) having or not a previous SARS-CoV-2 infection. Inclusion criteria: All people vaccinated with at least one dose of the COVID-19 vaccine (any available brands) in an area of residence. Any person eligible to be vaccinated (from 5 to 115 years old, included) with a positive diagnosis (irrespective of the type of test) for SARS-CoV-2 infection (COVID-19) during the period of study. Exclusion criteria: People not eligible for the vaccine (from 0 to 4 years old, included) Study period: From the date of the first documented SARS-CoV-2 infection in each country to the most recent date in which data is available at the time of analysis. Roughly from 01-03-2020 to 30-06-2022, depending on the country. Files included in this publication: Causal model (responding to the research question) SARS-CoV-2 vaccine effectiveness causal model v.1.0.0 (HTML) - Interactive report showcasing the structural causal model (DAG) to answer the research question SARS-CoV-2 vaccine effectiveness causal model v.1.0.0 (QMD) - Quarto RMarkdown script to produce the structural causal model Common data model specification (following the causal model) SARS-CoV-2 vaccine effectiveness data model specification (XLXS) - Human-readable version (Excel) SARS-CoV-2 vaccine effectiveness data model specification dataspice (HTML) - Human-readable version (interactive report) SARS-CoV-2 vaccine effectiveness data model specification dataspice (JSON) - Machine-readable version Synthetic dataset (complying with the common data model specifications) SARS-CoV-2 vaccine effectiveness synthetic dataset (CSV) [UTF-8, pipe | separated, N~650,000 registries] SARS-CoV-2 vaccine effectiveness synthetic dataset EDA (HTML) - Interactive report of the exploratory data analysis (EDA) of the synthetic dataset SARS-CoV-2 vaccine effectiveness synthetic dataset EDA (JSON) - Machine-readable version of the exploratory data analysis (EDA) of the synthetic dataset SARS-CoV-2 vaccine effectiveness synthetic dataset generation script (IPYNB) - Jupyter notebook with Python scripting and commenting to generate the synthetic dataset #### Baseline Use Case: SARS-CoV-2 vaccine effectiveness assessment - Common Data Model Specification v.1.1.0 change log #### Updated Causal model to eliminate the consideration of 'vaccination_schedule_cd' as a mediator Adjusted the study period to be consistent with the Study Protocol Updated 'sex_cd' as a required variable Added 'chronic_liver_disease_bl' as a comorbidity at the individual level Updated 'socecon_lvl_cd' at the area level as a recommended variable Added crosswalks for the definition of 'chronic_liver_disease_bl' in a separate sheet Updated the 'vaccination_schedule_cd' reference to the 'Vaccine' node in the updated DAG Updated the description of the 'confirmed_case_dt' and 'previous_infection_dt' variables to clarify the definition and the need for a single registry per person The scripts (software) accompanying the data model specification are offered "as-is" without warranty and disclaiming liability for damages resulting from using it. The software is released under the CC-BY-4.0 licence, which permits you to use the content for almost any purpose (but does not grant you any trademark permissions), so long as you note the license and give credit.
By Nicky Forster [source]
The dataset contains data points such as the cumulative count of people who have received at least one dose of the vaccine, new doses administered on a specific date, cumulative count of doses distributed in the country, percentage of population that has completed the full vaccine series, cumulative count of Pfizer and Moderna vaccine doses administered in each state, seven-day rolling averages for new doses administered and distributed, among others.
It also provides insights into the vaccination status at both national and state levels. The dataset includes information on the percentage of population that has received at least one dose of the vaccine, percentage of population that has completed the full vaccine series, cumulative counts per 100k population for both distributed and administered doses.
Additionally, it presents data specific to each state, including their abbreviation and name. It outlines details such as cumulative counts per 100k population for both distributed and administered doses in each state. Furthermore, it indicates if there were instances where corrections resulted in single-day negative counts.
The dataset is compiled from daily snapshots obtained from CDC's COVID Data Tracker. Please note that there may be reporting delays by healthcare providers up to 72 hours after administering a dose.
This comprehensive dataset serves various purposes including tracking vaccination progress over time across different locations within the United States. It can be used by researchers, policymakers or anyone interested in analyzing trends related to COVID-19 vaccination efforts at both national and state levels
Familiarize Yourself with the Columns: Take a look at the available columns in this dataset to understand what information is included. These columns provide details such as state abbreviations, state names, dates of data snapshots, cumulative counts of doses distributed and administered, people who have received at least one dose or completed the vaccine series, percentages of population coverage, manufacturer-specific data, and seven-day rolling averages.
Explore Cumulative Counts: The dataset includes cumulative counts that show the total number of doses distributed or administered over time. You can analyze these numbers to track trends in vaccination progress in different states or regions.
Analyze Daily Counts: The dataset also provides daily counts of new vaccine doses distributed and administered on specific dates. By examining these numbers, you can gain insights into vaccination rates on a day-to-day basis.
Study Population Coverage Metrics: Metrics such as pct_population_received_at_least_one_dose and pct_population_series_complete give you an understanding of how much of each state's population has received at least one dose or completed their vaccine series respectively.
Utilize Manufacturer Data: The columns related to Pfizer and Moderna provide information about the number of doses administered for each manufacturer separately. By analyzing this data, you can compare vaccination rates between different vaccines.
Consider Rolling Averages: The seven-day rolling average columns allow you to smooth out fluctuations in daily counts by calculating an average over a week's time window. This can help identify long-term trends more accurately.
Compare States: You can compare vaccination progress between different states by filtering the dataset based on state names or abbreviations. This way, you can observe variations in distribution and administration rates among different regions.
Visualize the Data: Creating charts and graphs will help you visualize the data more effectively. Plotting trends over time or comparing different metrics for various states can provide powerful visual representations of vaccination progress.
Stay Informed: Keep in mind that this dataset is continuously updated as new data becomes available. Make sure to check for any updates or refreshed datasets to obtain the most recent information on COVID-19 vaccine distributions and administrations
- Vaccination Analysis: This dataset can be used to analyze the progress of COVID-19 vaccinations in the United States. By examining the cumulative counts of doses distributed and administered, as well as the number of people who have received at least one dose or completed the vaccine series, researchers and policymakers can assess how effectively vaccines are being rolled out and monitor...
Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency.
The California Department of Public Health (CDPH) is identifying vaccination status of COVID-19 cases, hospitalizations, and deaths by analyzing the state immunization registry and registry of confirmed COVID-19 cases. Post-vaccination cases are individuals who have a positive SARS-Cov-2 molecular test (e.g. PCR) at least 14 days after they have completed their primary vaccination series.
Tracking cases of COVID-19 that occur after vaccination is important for monitoring the impact of immunization campaigns. While COVID-19 vaccines are safe and effective, some cases are still expected in persons who have been vaccinated, as no vaccine is 100% effective. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Post-Vaccine-COVID19-Cases.aspx
Post-vaccination infection data is updated monthly and includes data on cases, hospitalizations, and deaths among the unvaccinated and the vaccinated. Partially vaccinated individuals are excluded. To account for reporting and processing delays, there is at least a one-month lag in provided data (for example data published on 9/9/22 will include data through 7/31/22).
Notes:
On September 9, 2022, the post-vaccination data has been changed to compare unvaccinated with those with at least a primary series completed for persons age 5+. These data will be updated monthly (first Thursday of the month) and include at least a one month lag.
On February 2, 2022, the post-vaccination data has been changed to distinguish between vaccination with a primary series only versus vaccinated and boosted. The previous dataset has been uploaded as an archived table. Additionally, the lag on this data has been extended to 14 days.
On November 29, 2021, the denominator for calculating vaccine coverage has been changed from age 16+ to age 12+ to reflect new vaccine eligibility criteria. The previous dataset based on age 16+ denominators has been uploaded as an archived table.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The number of COVID-19 vaccination doses administered per 100 people in the United States rose to 204 as of Oct 27 2023. This dataset includes a chart with historical data for the United States Coronavirus Vaccination Rate.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains selected results of rigorous numerical computations described in Section 5 of the paper "Rich bifurcation structure in a two-patch vaccination model" by D.H. Knipl, P. Pilarczyk, G. Röst, published in SIAM Journal on Applied Dynamical Systems (SIADS), Vol. 14, No. 2 (2015), pp. 980–1017, doi: 10.1137/140993934.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The number of COVID-19 vaccination doses administered per 100 people in Japan rose to 310 as of Oct 27 2023. This dataset includes a chart with historical data for Japan Coronavirus Vaccination Rate.
As of January 18, 2023, Portugal had the highest COVID-19 vaccination rate in Europe having administered 272.78 doses per 100 people in the country, while Malta had administered 258.49 doses per 100. The UK was the first country in Europe to approve the Pfizer/BioNTech vaccine for widespread use and began inoculations on December 8, 2020, and so far have administered 224.04 doses per 100. At the latest data, Belgium had carried out 253.89 doses of vaccines per 100 population. Russia became the first country in the world to authorize a vaccine - named Sputnik V - for use in the fight against COVID-19 in August 2020. As of August 4, 2022, Russia had administered 127.3 doses per 100 people in the country.
The seven-day rate of cases across Europe shows an ongoing perspective of which countries are worst affected by the virus relative to their population. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.
This Power BI dashboard shows the COVID-19 vaccination rate by key demographics including age groups, race and ethnicity, and sex for Tempe zip codes.Data Source: Maricopa County GIS Open Data weekly count of COVID-19 vaccinations. The data were reformatted from the source data to accommodate dashboard configuration. The Maricopa County Department of Public Health (MCDPH) releases the COVID-19 vaccination data for each zip code and city in Maricopa County at ~12:00 PM weekly on Wednesdays via the Maricopa County GIS Open Data website (https://data-maricopa.opendata.arcgis.com/). More information about the data is available on the Maricopa County COVID-19 Vaccine Data page (https://www.maricopa.gov/5671/Public-Vaccine-Data#dashboard). The dashboard’s values are refreshed at 3:00 PM weekly on Wednesdays. The most recent date included on the dashboard is available by hovering over the last point on the right-hand side of each chart. Please note that the times when the Maricopa County Department of Public Health (MCDPH) releases weekly data for COVID-19 vaccines may vary. If data are not released by the time of the scheduled dashboard refresh, the values may appear on the dashboard with the next data release, which may be one or more days after the last scheduled release.Dates: Updated data shows publishing dates which represents values from the previous calendar week (Sunday through Saturday). For more details on data reporting, please see the Maricopa County COVID-19 data reporting notes at https://www.maricopa.gov/5460/Coronavirus-Disease-2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Micronesia, Federated States of's Measles vaccination, % of children vaccinated is 78% which is the 157th highest in the world ranking. Transition graphs on Measles vaccination, % of children vaccinated in Micronesia, Federated States of and comparison bar charts (USA vs. China vs. Japan vs. Micronesia, Federated States of), (Kiribati vs. Grenada vs. Micronesia, Federated States of) are used for easy understanding. Various data can be downloaded and output in csv format for use in EXCEL free of charge.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Immunization, BCG (% of one-year-old children) in Ecuador was reported at 76 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Ecuador - Immunization, BCG (% of one-year-old children) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Covid vaccinated people per hundred people in Iceland, March, 2022 The most recent value is 83.07 Covid vaccinated people per hundred people as of March 2022, an increase compared to the previous value of 82.96 Covid vaccinated people per hundred people. Historically, the average for Iceland from December 2020 to March 2022 is 54.28 Covid vaccinated people per hundred people. The minimum of 1.31 Covid vaccinated people per hundred people was recorded in December 2020, while the maximum of 83.07 Covid vaccinated people per hundred people was reached in March 2022. | TheGlobalEconomy.com
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The number of COVID-19 vaccination doses administered per 100 people in Nigeria rose to 53 as of Oct 27 2023. This dataset includes a chart with historical data for Nigeria Coronavirus Vaccination Rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Study population demographics and clinical characteristics according to vaccination status.
The development of vaccination by Edward Jenner in 1796 is seen by many as one of the most important and world-changing medical discoveries ever made. Throughout human history, smallpox was responsible for an untold and innumerable share of fatalities, with epidemics devastating countries (and even continents) in their wake; as of 1980, the World Health Organization declared smallpox to be eliminated in nature, making it the only human disease to have been successfully eradicated. If we look at the share of smallpox deaths in England over the nineteenth century, we can see the impact that vaccination had on society during this time. Decline in Britain Within this century, the number of people dying annually from smallpox dropped from 3,000 per million people in the 1700s, to just ten people per million in the 1890s (it is also worth noting that a smallpox pandemic swept across Britain between 1891 and 1893, which caused this number to be higher than it could have been). Mandatory vaccination was not introduced in England until 1853, but by this point the number of smallpox deaths per million people had already fallen to a fraction of its eighteenth century level, and compulsory vaccination reduced these numbers even further.