90 datasets found
  1. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Booster Dose [Dataset]. https://healthdata.gov/w/pifi-rn2z/default?cur=dU-uRhCR4oE
    Explore at:
    xml, csv, application/rdfxml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  2. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Oct 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2021). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Oct 19, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  3. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  4. Deaths Involving COVID-19 by Vaccination Status

    • ouvert.canada.ca
    • datasets.ai
    • +3more
    csv, docx, html, xlsx
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://ouvert.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    xlsx, html, docx, csvAvailable download formats
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  5. Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent)...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2022). Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent) Booster Status [Dataset]. https://healthdata.gov/dataset/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/fzpw-ihr7
    Explore at:
    application/rssxml, tsv, csv, json, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Nov 23, 2022
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes

    Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status

    Dataset and data visualization details:

    These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.

    Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.

    Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.

    Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be

  6. Smallpox distribution of deaths by age (pre- and post-vaccination) 1580-1828...

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Smallpox distribution of deaths by age (pre- and post-vaccination) 1580-1828 [Dataset]. https://www.statista.com/statistics/1107764/smallpox-deaths-by-age-before-after-vaccination-introduced/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany, Denmark, United Kingdom (England, France, Scotland)
    Description

    Before Jenner's work made vaccination commonplace at the turn of the nineteenth century, smallpox disproportionately affected children more than adults, with the share of deaths among those aged below ten years typically above ninety percent. This number even reached one hundred percent in some epidemics, such as in Chester, England in 1775; where all 202 smallpox deaths that year occurred in children below the age of ten, and 180 of these were in children below the age of five. Following the introduction of vaccination practices, which generally had the highest rates across Britain, Germany and Scandinavia, the share of smallpox cases in those aged above and below ten years saw a significant decrease, falling as low as 3.65 percent in one sample in London in 1822. The study in Marseilles is the only case shown here where the distribution of smallpox deaths was close to the figures shown in pre-vaccination Europe; this may be due to the political instability caused by Bourbon rule in post-Napoleonic France, as French authorities typically did not promote or enforce vaccination; a factor that would contribute greatly to the outbreak of the Great Smallpox Pandemic of the 1870s.

  7. C

    COVID-19 Outcomes by Vaccination Status - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated Jan 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2022). COVID-19 Outcomes by Vaccination Status - Historical [Dataset]. https://data.cityofchicago.org/Health-Human-Services/COVID-19-Outcomes-by-Vaccination-Status-Historical/6irb-gasv
    Explore at:
    csv, application/rdfxml, xml, tsv, application/rssxml, jsonAvailable download formats
    Dataset updated
    Jan 7, 2022
    Dataset authored and provided by
    City of Chicago
    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.

    Data Source: Illinois' National Electronic Disease Surveillance System (I-NEDSS), Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau American Community Survey

  8. Smallpox deaths by age in England and Wales 1847-1887

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Smallpox deaths by age in England and Wales 1847-1887 [Dataset]. https://www.statista.com/statistics/1107635/smallpox-deaths-by-age-england-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    England
    Description

    Following Edward Jenner's development of the smallpox vaccine in 1796, the death rate due to smallpox in England and Wales dropped significantly. Although Jenner's work was published in 1797, it would take over half a century for the British government to make vaccination compulsory for all infants. Between 1847 and 1853, when vaccination was optional, children under the age of five years had, by far, the largest number of deaths; the total death rate was 1.6 thousand deaths per million people, which was more than five times the overall death rate due to smallpox. When compulsory vaccination was introduced, this helped bring the smallpox death rate in this age group down by over fifty percent between 1854 and 1871. When compulsory vaccination was enforced with penalties in the wake of the Great Pandemic of the 1870s, the smallpox death rate among children under the age of five dropped to approximately fifteen percent of its optional vaccination level. Increase among adults Along with the youngest age group, children aged five to ten years also saw their death rates decrease by roughly two thirds, and the death rate among those aged ten to 15 declined by just under one third during this time. It was among adults, aged above 15 years, where the introduction of mandatory vaccination had an adverse effect on their death rates; increasing by fifty percent among young adults, and almost doubling among those aged 25 to 45. The reason for this was because, contrary to Jenner's theory, vaccination did not guarantee lifelong protection, and immunization gradually wore off making vaccinated people susceptible to the virus again in adulthood. There was some decline in the smallpox death rates among adults throughout the 1870s and 1880s, as revaccination became more common, and the enforced vaccination of children prevented smallpox from spreading as rapidly as in the pre-vaccination era. Overall trends While the introduction of mandatory vaccination saw the number of smallpox deaths increase for age groups above 15 years, the overall rate among all ages decreased, due to the huge drop in deaths among infants and children. The smallpox death rate dropped by over one quarter when compulsory vaccination was introduced, and it then fell to just over one third of it's optional-vaccination level when these measures were enforced. The development of the smallpox vaccine and the implementation of mandatory vaccination led to the eradication of the disease in Britain by 1934, and contributed greatly to the demographic developments of the twentieth century, such as the declines in fertility rate and birth rate, and the increase in life expectancy.

  9. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    xsl, json, rdf, csvAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  10. Share of total deaths due to smallpox by age during the Great Pandemic of...

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of total deaths due to smallpox by age during the Great Pandemic of 1870-1875 [Dataset]. https://www.statista.com/statistics/1107867/smallpox-share-smallpox-total-deaths-by-age-great-pandemic-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Scotland), Austria, Belgium, Sweden, Netherlands, Germany (Bavaria), United Kingdom (England
    Description

    Depending on the reach and level of vaccination within Europe's various states in the 1870s, smallpox had a varied impact on various age groups. For infants below the age of one year, smallpox was responsible for between 15 and 30 percent of all deaths in the given regions, as many of these babies had not yet been vaccinated and were at a high risk of succumbing to the virus. In states where the vaccination of infants was not compulsory, such as the Netherlands, Berlin (Prussia) and Leipzig (Saxony), the share of deaths due to smallpox among young children remained high, while it was relatively low in Hesse and Scotland, who had introduced mandatory vaccination in 1815 and 1864 respectively. Great Pandemic highlights the need for revaccination As Hesse had been vaccinating on a large scale for generations, the share of smallpox deaths was relatively low among young people; however, between 1870 and 1872, over half of all deaths among those aged 30 to 60 years were due to smallpox. The reason for this was because smallpox vaccination in infancy did not guarantee lifelong protection, therefore immunity often wore off in adulthood. In the 1830s and 1840s, several German armies started to vaccinate new recruits regardless of whether they had been vaccinated in infancy or not; when scientists compared the smallpox death rates in the army with that of the civilian population during this pandemic, they noticed that it was much lower in the army, due to these revaccination policies. This discovery helped many scientists in Europe recognize the need for revaccination, which greatly contributed to the eradication of the disease across most of Europe in the early twentieth century.

  11. u

    Deaths Involving COVID-19 by Vaccination Status

    • beta.data.urbandatacentre.ca
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://beta.data.urbandatacentre.ca/dataset/gov-canada-1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    Dataset updated
    Sep 13, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  12. COVID-19 deaths in England as of May 2022 by vaccination status and age

    • statista.com
    Updated Jan 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). COVID-19 deaths in England as of May 2022 by vaccination status and age [Dataset]. https://www.statista.com/statistics/1284049/covid-19-deaths-by-vaccination-status-in-england/
    Explore at:
    Dataset updated
    Jan 1, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2021 - May 31, 2022
    Area covered
    England
    Description

    Between January 1, 2021 and May 31, 2022, there were approximately 30.6 thousand deaths involving COVID-19 among 80 to 89 year olds in England, with over 14 thousand deaths occurring among unvaccinated people in this age group. Across all the age groups in the provided time interval, deaths involving COVID-19 among the unvaccinated population was around double the amount of people who received at least two doses of a vaccine. For further information about the COVID-19 pandemic, please visit our dedicated Facts and Figures page.

  13. COVID-19 deaths reported in the U.S. as of June 14, 2023, by age

    • statista.com
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 deaths reported in the U.S. as of June 14, 2023, by age [Dataset]. https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Jun 14, 2023
    Area covered
    United States
    Description

    Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.

  14. u

    Deaths Involving COVID-19 by Vaccination Status - Catalogue - Canadian Urban...

    • data.urbandatacentre.ca
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Deaths Involving COVID-19 by Vaccination Status - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    Dataset updated
    Oct 1, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  15. Coronavirus death rate in Italy as of May 2023, by age group

    • statista.com
    Updated May 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Coronavirus death rate in Italy as of May 2023, by age group [Dataset]. https://www.statista.com/statistics/1106372/coronavirus-death-rate-by-age-group-italy/
    Explore at:
    Dataset updated
    May 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 3, 2023
    Area covered
    Italy
    Description

    The spread of coronavirus (COVID-19) in Italy has hit every age group uniformly and claimed over 190 thousand lives since it entered the country. As the chart shows, however, mortality rate appeared to be much higher for the elderly patient. In fact, for people between 80 and 89 years of age, the fatality rate was 6.1 percent. For patients older than 90 years, this figure increased to 12.1 percent. On the other hand, the death rate for individuals under 60 years of age was well below 0.5 percent. Overall, the mortality rate of coronavirus in Italy was 0.7 percent.

    Italy's death toll was one of the most tragic in the world. In the last months, however, the country started to see the end of this terrible situation: as of May 2023, roughly 84.7 percent of the total Italian population was fully vaccinated.

    Since the first case was detected at the end of January in Italy, coronavirus has been spreading fast. As of May, 2023, the authorities reported over 25.8 million cases in the country. The area mostly hit by the virus is the North, in particular the region of Lombardy.

    For a global overview visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.

  16. Number of flu-related deaths in the U.S. in 2023-2024, by age group

    • statista.com
    Updated Apr 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of flu-related deaths in the U.S. in 2023-2024, by age group [Dataset]. https://www.statista.com/statistics/1127698/influenza-us-deaths-by-age-group/
    Explore at:
    Dataset updated
    Apr 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023 - 2024
    Area covered
    United States
    Description

    During the 2023-2024 flu season in the United States, an estimated 27,965 people died from influenza. The vast majority of deaths due to influenza occur among the elderly, with those aged 65 years and older accounting for 19,038 deaths during the 2023-2024 flu season. During this time, the mortality rate from influenza among those aged 65 years and older was around 32 per 100,000 population, compared to a mortality rate of two per 100,000 population among those aged 18 to 49 years. Influenza deaths Although most people recover from influenza without the need of medical care, influenza and pneumonia are still major causes of death in the United States. Influenza is a common cause of pneumonia and cases in which influenza develops into pneumonia tend to be more severe and more deadly. However, the impact of influenza varies from year to year depending on which viruses are circulating. For example, during the 2017-2018 flu season around 52,000 people died due to influenza, whereas in 2023-2024 total deaths amounted to 28,000. Preventing death The most effective way to prevent influenza is to receive an annual influenza vaccination. These vaccines have proven to be safe and are usually cheap and easily accessible. Each year, flu vaccinations prevent thousands of influenza cases, hospitalizations and deaths. It was estimated that during the 2022-2023 flu season, vaccinations prevented the deaths of around 2,479 people aged 65 years and older.

  17. COVID-19 vaccine effectiveness estimated using Census 2021 variables,...

    • statistics.ukdataservice.ac.uk
    xlsx
    Updated Mar 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2023). COVID-19 vaccine effectiveness estimated using Census 2021 variables, England: 31 March 2021 to 20 March 2022 [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/covid-19-vaccine-effectiveness-estimated-using-census-2021-variables-england
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 8, 2023
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Office for National Statisticshttp://www.ons.gov.uk/
    Authors
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service.
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    Estimates of the risk of hospital admission for coronavirus (COVID-19) and death involving COVID-19 by vaccination status, overall and by age group, using anonymised linked data from Census 2021. Experimental Statistics.

    Outcome definitions

    For this analysis, we define a death as involving COVID-19 if either of the ICD-10 codes U07.1 (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified) is mentioned on the death certificate. Information on cause of death coding is available in the User Guide to Mortality Statistics. We use date of occurrance rather than date of registration to give the date of the death.

    We define COVID-109 hospitalisation as an inpatient episode in Hospital Episode Statistics where the primary diagnosis was COVID-19, identified by the ICD-19 codes (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified). Where an individual had experienced more than one COVID-19 hospitalisation, the earliest that occurred within the study period was used. We define the date of COVID-19 hospitalisation as the start of the hospital episode.

    ICD-10 code

    U07.1 :

    COVID-19, virus identified

    U07.2:

    COVID-19, virus not identified

    Vaccination status is defined by the dose and the time since the last dose received

    Unvaccinated:

    no vaccination to less than 21 days post first dose

    First dose 21 days to 3 months:

    more than or equal to 21 days post second dose to earliest of less than 91 days post first dose or less than 21 days post second dose

    First dose 3+ months:

    more than or equal to 91 days post first dose to less than 21 days post second dose

    Second dose 21 days to 3 months:

    more than or equal to 21 days post second dose to earliest of less than 91 days post second dose or less than 21 days post third dose

    Second dose 3-6 months:

    more than or equal to 91 days post second dose to earliest of less than 182 days post second dose or less than 21 days post third dose

    Second dose 6+ months:

    more than or equal to 182 days post second dose to less than 21 days post third dose

    Third dose 21 days to 3 months:

    more than or equal to 21 days post third dose to less than 91 days post third dose

    Third dose 3+ months:

    more than or equal to 91 days post third dose

    Model adjustments

    Three sets of model adjustments were used

    Age adjusted:

    age (as a natural spline)

    Age, socio-demographics adjusted:

    age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status)

    Fully adjusted:

    age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status), plus health-related characteristics (disability, self-reported health, care home residency, number of QCovid comorbidities (grouped), BMI category, frailty flag and hospitalisation within the last 21 days.

    Age

    Age in years is defined on the Census day 2021 (21 March 2021). Age is included in the model as a natural spline with boundary knots at the 10th and 90th centiles and internal knots at the 25th, 50th and 75th centiles. The positions of the knots are calculated separately for the overall model and for each age group for the stratified model.

  18. I

    Data from: Reduced COVID-19 hospitalizations among New York City residents...

    • data.niaid.nih.gov
    • immport.org
    url
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Reduced COVID-19 hospitalizations among New York City residents following age-based SARS-CoV-2 vaccine eligibility: Evidence from a regression discontinuity design [Dataset]. http://doi.org/10.21430/M3MORBFJTU
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jul 25, 2024
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Description

    Background: In clinical trials, several SARS-CoV-2 vaccines were shown to reduce risk of severe COVID-19 illness. Local, population-level, real-world evidence of vaccine effectiveness is accumulating. We assessed vaccine effectiveness for community-dwelling New York City (NYC) residents using a quasi-experimental, regression discontinuity design, leveraging a period (January 12-March 9, 2021) when ≥ 65-year-olds were vaccine-eligible but younger persons, excluding essential workers, were not. Methods: We constructed segmented, negative binomial regression models of age-specific COVID-19 hospitalization rates among 45-84-year-old NYC residents during a post-vaccination program implementation period (February 21-April 17, 2021), with a discontinuity at age 65 years. The relationship between age and hospitalization rates in an unvaccinated population was incorporated using a pre-implementation period (December 20, 2020-February 13, 2021). We calculated the rate ratio (RR) and 95% confidence interval (CI) for the interaction between implementation period (pre or post) and age-based eligibility (45-64 or 65-84 years). Analyses were stratified by race/ethnicity and borough of residence. Similar analyses were conducted for COVID-19 deaths. Results: Hospitalization rates among 65-84-year-olds decreased from pre- to post-implementation periods (RR 0.85, 95% CI: 0.74-0.97), controlling for trends among 45-64-year-olds. Accordingly, an estimated 721 (95% CI: 126-1,241) hospitalizations were averted. Residents just above the eligibility threshold (65-66-year-olds) had lower hospitalization rates than those below (63-64-year-olds). Racial/ethnic groups and boroughs with higher vaccine coverage generally experienced greater reductions in RR point estimates. Uncertainty was greater for the decrease in COVID-19 death rates (RR 0.85, 95% CI: 0.66-1.10). Conclusion: The vaccination program in NYC reduced COVID-19 hospitalizations among the initially age-eligible ≥ 65-year-old population by approximately 15% in the first eight weeks. The real-world evidence of vaccine effectiveness makes it more imperative to improve vaccine access and uptake to reduce inequities in COVID-19 outcomes.

  19. f

    Frequency of Adverse Events after Vaccination with Different Vaccinia...

    • plos.figshare.com
    doc
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mirjam Kretzschmar; Jacco Wallinga; Peter Teunis; Shuqin Xing; Rafael Mikolajczyk (2023). Frequency of Adverse Events after Vaccination with Different Vaccinia Strains [Dataset]. http://doi.org/10.1371/journal.pmed.0030272
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS Medicine
    Authors
    Mirjam Kretzschmar; Jacco Wallinga; Peter Teunis; Shuqin Xing; Rafael Mikolajczyk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundLarge quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH) strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus. Methods and FindingsWe analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect that showed decreasing incidences of adverse events over several decades. To estimate death rates, we then restricted our analysis to more-recent studies. We estimated that vaccination with the NYCBH strain leads to an average of 1.4 deaths per million vaccinations (95% credible interval, 0–6) and that vaccination with Lister vaccine leads to an average of 8.4 deaths per million vaccinations (95% credible interval, 0–31). We combined age-dependent estimates of the frequency of death after vaccination and revaccination with demographic data to obtain estimates of the expected number of deaths in present societies due to vaccination with the NYCBH and Lister vaccinia strains. ConclusionsPrevious analyses of smallpox vaccination policies, which rely on the commonly assumed value of one death per million vaccinations, may give serious underestimates of the number of deaths resulting from vaccination. Moreover, because there are large, strain-dependent differences in the frequency of adverse events due to smallpox vaccination, it is difficult to extrapolate from predictions for the NYCBH-derived vaccines (stockpiled in countries such as the US) to predictions for the Lister-derived vaccines (stockpiled in countries such as Germany). In planning for an effective response to a possible smallpox outbreak, public-health decision makers should reconsider their strategies of when to opt for ring vaccination and when to opt for mass vaccination.

  20. I

    Estimated preventable COVID-19-associated deaths due to non-vaccination in...

    • data.niaid.nih.gov
    url
    Updated Jan 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimated preventable COVID-19-associated deaths due to non-vaccination in the United States [Dataset]. http://doi.org/10.21430/M3MTSYRBG6
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jan 25, 2024
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Area covered
    United States
    Description

    While some studies have previously estimated lives saved by COVID-19 vaccination, we estimate how many deaths could have been averted by vaccination in the US but were not because of a failure to vaccinate. We used a simple method based on a nationally representative dataset to estimate the preventable deaths among unvaccinated individuals in the US from May 30, 2021 to September 3, 2022 adjusted for the effects of age and time. We estimated that at least 232,000 deaths could have been prevented among unvaccinated adults during the 15 months had they been vaccinated with at least a primary series. While uncertainties exist regarding the exact number of preventable deaths and more granular data are needed on other factors causing differences in death rates between the vaccinated and unvaccinated groups to inform these estimates, this method is a rapid assessment on vaccine-preventable deaths due to SARS-CoV-2 that has crucial public health implications. The same rapid method can be used for future public health emergencies.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Booster Dose [Dataset]. https://healthdata.gov/w/pifi-rn2z/default?cur=dU-uRhCR4oE
Organization logo

Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Booster Dose

Explore at:
xml, csv, application/rdfxml, tsv, json, application/rssxmlAvailable download formats
Dataset updated
Jun 16, 2023
Dataset provided by
data.cdc.gov
Description

Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

Search
Clear search
Close search
Google apps
Main menu