100+ datasets found
  1. Machine learning algorithm validation with a limited sample size

    • plos.figshare.com
    text/x-python
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson (2023). Machine learning algorithm validation with a limited sample size [Dataset]. http://doi.org/10.1371/journal.pone.0224365
    Explore at:
    text/x-pythonAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.

  2. Images used for training, validation, and testing.

    • kaggle.com
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chrysthian Chrisley (2024). Images used for training, validation, and testing. [Dataset]. https://www.kaggle.com/datasets/chrysthian/images-used-for-training-validation-and-testing
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    Kaggle
    Authors
    Chrysthian Chrisley
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Description

    Imports:

    # All Imports
    import os
    from matplotlib import pyplot as plt
    import pandas as pd
    from sklearn.calibration import LabelEncoder
    import seaborn as sns
    import matplotlib.image as mpimg
    import cv2
    import numpy as np
    import pickle
    
    # Tensflor and Keras Layer and Model and Optimize and Loss
    import tensorflow as tf
    from tensorflow import keras
    from keras import Sequential
    from keras.layers import *
    
    #Kernel Intilizer 
    from keras.optimizers import Adamax
    
    # PreTrained Model
    from keras.applications import *
    
    #Early Stopping
    from keras.callbacks import EarlyStopping
    import warnings 
    

    Warnings Suppression | Configuration

    # Warnings Remove 
    warnings.filterwarnings("ignore")
    
    # Define the base path for the training folder
    base_path = 'jaguar_cheetah/train'
    
    # Weights file
    weights_file = 'Model_train_weights.weights.h5'
    
    # Path to the saved or to save the model:
    model_file = 'Model-cheetah_jaguar_Treined.keras'
    
    # Model history
    history_path = 'training_history_cheetah_jaguar.pkl'
    
    # Initialize lists to store file paths and labels
    filepaths = []
    labels = []
    
    # Iterate over folders and files within the training directory
    for folder in ['Cheetah', 'Jaguar']:
      folder_path = os.path.join(base_path, folder)
      for filename in os.listdir(folder_path):
        file_path = os.path.join(folder_path, filename)
        filepaths.append(file_path)
        labels.append(folder)
    
    # Create the TRAINING dataframe
    file_path_series = pd.Series(filepaths , name= 'filepath')
    Label_path_series = pd.Series(labels , name = 'label')
    df_train = pd.concat([file_path_series ,Label_path_series ] , axis = 1)
    
    
    # Define the base path for the test folder
    directory = "jaguar_cheetah/test"
    
    filepath =[]
    label = []
    
    folds = os.listdir(directory)
    
    for fold in folds:
      f_path = os.path.join(directory , fold)
      
      imgs = os.listdir(f_path)
      
      for img in imgs:
        
        img_path = os.path.join(f_path , img)
        filepath.append(img_path)
        label.append(fold)
        
    # Create the TEST dataframe
    file_path_series = pd.Series(filepath , name= 'filepath')
    Label_path_series = pd.Series(label , name = 'label')
    df_test = pd.concat([file_path_series ,Label_path_series ] , axis = 1)
    
    # Display the first rows of the dataframe for verification
    #print(df_train)
    
    # Folders with Training and Test files
    data_dir = 'jaguar_cheetah/train'
    test_dir = 'jaguar_cheetah/test'
    
    # Image size 256x256
    IMAGE_SIZE = (256,256) 
    

    Tain | Test

    #print('Training Images:')
    
    # Create the TRAIN dataframe
    train_ds = tf.keras.utils.image_dataset_from_directory(
      data_dir,
      validation_split=0.1,
      subset='training',
      seed=123,
      image_size=IMAGE_SIZE,
      batch_size=32)
    
    #Testing Data
    #print('Validation Images:')
    validation_ds = tf.keras.utils.image_dataset_from_directory(
      data_dir, 
      validation_split=0.1,
      subset='validation',
      seed=123,
      image_size=IMAGE_SIZE,
      batch_size=32)
    
    print('Testing Images:')
    test_ds = tf.keras.utils.image_dataset_from_directory(
      test_dir, 
      seed=123,
      image_size=IMAGE_SIZE,
      batch_size=32)
    
    # Extract labels
    train_labels = train_ds.class_names
    test_labels = test_ds.class_names
    validation_labels = validation_ds.class_names
    
    # Encode labels
    # Defining the class labels
    class_labels = ['CHEETAH', 'JAGUAR'] 
    
    # Instantiate (encoder) LabelEncoder
    label_encoder = LabelEncoder()
    
    # Fit the label encoder on the class labels
    label_encoder.fit(class_labels)
    
    # Transform the labels for the training dataset
    train_labels_encoded = label_encoder.transform(train_labels)
    
    # Transform the labels for the validation dataset
    validation_labels_encoded = label_encoder.transform(validation_labels)
    
    # Transform the labels for the testing dataset
    test_labels_encoded = label_encoder.transform(test_labels)
    
    # Normalize the pixel values
    
    # Train files 
    train_ds = train_ds.map(lambda x, y: (x / 255.0, y))
    # Validate files
    validation_ds = validation_ds.map(lambda x, y: (x / 255.0, y))
    # Test files
    test_ds = test_ds.map(lambda x, y: (x / 255.0, y))
    
    #TRAINING VISUALIZATION
    #Count the occurrences of each category in the column
    count = df_train['label'].value_counts()
    
    # Create a figure with 2 subplots
    fig, axs = plt.subplots(1, 2, figsize=(12, 6), facecolor='white')
    
    # Plot a pie chart on the first subplot
    palette = sns.color_palette("viridis")
    sns.set_palette(palette)
    axs[0].pie(count, labels=count.index, autopct='%1.1f%%', startangle=140)
    axs[0].set_title('Distribution of Training Categories')
    
    # Plot a bar chart on the second subplot
    sns.barplot(x=count.index, y=count.values, ax=axs[1], palette="viridis")
    axs[1].set_title('Count of Training Categories')
    
    # Adjust the layout
    plt.tight_layout()
    
    # Visualize
    plt.show()
    
    # TEST VISUALIZATION
    count = df_test['label'].value_counts()
    
    # Create a figure with 2 subplots
    fig, axs = plt.subplots(1, 2, figsize=(12, 6), facec...
    
  3. Training, test and validation performance.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timm Schoening; Melanie Bergmann; Jörg Ontrup; James Taylor; Jennifer Dannheim; Julian Gutt; Autun Purser; Tim W. Nattkemper (2023). Training, test and validation performance. [Dataset]. http://doi.org/10.1371/journal.pone.0038179.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Timm Schoening; Melanie Bergmann; Jörg Ontrup; James Taylor; Jennifer Dannheim; Julian Gutt; Autun Purser; Tim W. Nattkemper
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Given are the training, test and validation performance as measured by Sensitivity (SE) and Positive Predictive Value (PPV). The training and test performances are computed with a 4-fold cross validation on the training set. In the validation step, iSIS was applied to the entire images for taxa detection and the detection results were compared to our gold standard by computing SE and PPV. The performance decreases significantly from the test data to the validation due to an increase in FP. The last row shows SE and PPV results after a careful re-evaluation of the FP (see text for details) yielding our final estimates for iSIS’ SE and PPV. The last column shows the correlation between object counts of the gold standard items and the machine detection result for the full transect.

  4. Data from: Web Data Commons Training and Test Sets for Large-Scale Product...

    • linkagelibrary.icpsr.umich.edu
    • da-ra.de
    Updated Nov 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ralph Peeters; Anna Primpeli; Christian Bizer (2020). Web Data Commons Training and Test Sets for Large-Scale Product Matching - Version 2.0 [Dataset]. http://doi.org/10.3886/E127481V1
    Explore at:
    Dataset updated
    Nov 26, 2020
    Dataset provided by
    University of Mannheim (Germany)
    Authors
    Ralph Peeters; Anna Primpeli; Christian Bizer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Many e-shops have started to mark-up product data within their HTML pages using the schema.org vocabulary. The Web Data Commons project regularly extracts such data from the Common Crawl, a large public web crawl. The Web Data Commons Training and Test Sets for Large-Scale Product Matching contain product offers from different e-shops in the form of binary product pairs (with corresponding label “match” or “no match”) for four product categories, computers, cameras, watches and shoes. In order to support the evaluation of machine learning-based matching methods, the data is split into training, validation and test sets. For each product category, we provide training sets in four different sizes (2.000-70.000 pairs). Furthermore there are sets of ids for each training set for a possible validation split (stratified random draw) available. The test set for each product category consists of 1.100 product pairs. The labels of the test sets were manually checked while those of the training sets were derived using shared product identifiers from the Web weak supervision. The data stems from the WDC Product Data Corpus for Large-Scale Product Matching - Version 2.0 which consists of 26 million product offers originating from 79 thousand websites. For more information and download links for the corpus itself, please follow the links below.

  5. give us the data validation test set

    • kaggle.com
    zip
    Updated Apr 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna (2021). give us the data validation test set [Dataset]. https://www.kaggle.com/annatmp/give-us-the-data-validation-test-set
    Explore at:
    zip(439562080 bytes)Available download formats
    Dataset updated
    Apr 23, 2021
    Authors
    Anna
    Description

    Dataset

    This dataset was created by Anna

    Contents

  6. Z

    CARLA Simulation Datasets for Training, Validation, and Test Data of the...

    • data.niaid.nih.gov
    Updated Jan 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaikh, Hamdaan Asif (2024). CARLA Simulation Datasets for Training, Validation, and Test Data of the project "Out-Of-Domain Data Detection using Uncertainty Quantification in End-to-End Driving Algorithms" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10511420
    Explore at:
    Dataset updated
    Jan 15, 2024
    Dataset provided by
    TU Dresden
    Authors
    Shaikh, Hamdaan Asif
    Description

    These are CARLA Simulation Datasets of the project "Out-Of-Domain Data Detection using Uncertainty Quantification in End-to-End Driving Algorithms". The simulations are generated in CARLA Town 02 for different sun angles (in degrees). You will find image frames, command labels, and steering control values in the respective 'xxxx_files_data' folder. You will find videos of each simulation run in the 'xxxx_files_visualizations' folder.

    The 8 simulation runs for Training Data, are with the Sun Angles : 90, 80, 70, 60, 50, 40, 30, 20

    The 8 simulation runs for Training Data were seeded at 0000, 1000, 2000, 3000, 4000, 5000, 6000, 7000 respectively

    The 4 simulation runs for Validation Data, are with the Sun Angles : 87, 67, 47, 23

    The 4 simulation runs for Validation Data were seeded at 0000, 2000, 4000, 7000 respectively

    The 29 simulation runs for Testing Data, are with the Sun Angles : 85, 75, 65, 55, 45, 35, 25, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 09, 08, 07, 06, 05, 04, 03, 02, 01, 00, -1, -10

    The 29 simulation runs for Testing Data were all seeded at 5000 respectively

  7. Data from: Robust Validation: Confident Predictions Even When Distributions...

    • tandf.figshare.com
    bin
    Updated Dec 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maxime Cauchois; Suyash Gupta; Alnur Ali; John C. Duchi (2023). Robust Validation: Confident Predictions Even When Distributions Shift* [Dataset]. http://doi.org/10.6084/m9.figshare.24904721.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 26, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Maxime Cauchois; Suyash Gupta; Alnur Ali; John C. Duchi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    While the traditional viewpoint in machine learning and statistics assumes training and testing samples come from the same population, practice belies this fiction. One strategy—coming from robust statistics and optimization—is thus to build a model robust to distributional perturbations. In this paper, we take a different approach to describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions. We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an f-divergence ball around the training population. The method, based on conformal inference, achieves (nearly) valid coverage in finite samples, under only the condition that the training data be exchangeable. An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it; we develop estimators and prove their consistency for protection and validity of uncertainty estimates under shifts. By experimenting on several large-scale benchmark datasets, including Recht et al.’s CIFAR-v4 and ImageNet-V2 datasets, we provide complementary empirical results that highlight the importance of robust predictive validity.

  8. Z

    Data pipeline Validation And Load Testing using Multiple CSV Files

    • data.niaid.nih.gov
    • data.europa.eu
    Updated Mar 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mainak Adhikari; Afsana Khan; Pelle Jakovits (2021). Data pipeline Validation And Load Testing using Multiple CSV Files [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4636797
    Explore at:
    Dataset updated
    Mar 26, 2021
    Dataset provided by
    Lecturer, University of Tartu
    Research Fellow, University of Tartu
    Masters Student, University of Tartu
    Authors
    Mainak Adhikari; Afsana Khan; Pelle Jakovits
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets were used to validate and test the data pipeline deployment following the RADON approach. The dataset has a CSV file that contains around 32000 Twitter tweets. 100 CSV files have been created from the single CSV file and each CSV file containing 320 tweets. Those 100 CSV files are used to validate and test (performance/load testing) the data pipeline components.

  9. m

    ANN Coagulation Model Training, Validation and Test dataset

    • data.mendeley.com
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onochie Okonkwo (2023). ANN Coagulation Model Training, Validation and Test dataset [Dataset]. http://doi.org/10.17632/pt4wjkhmyk.1
    Explore at:
    Dataset updated
    Jan 27, 2023
    Authors
    Onochie Okonkwo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset describes the training, validation and test dataset used for the development of a hybrid ANN coagulation model.

  10. Automated Cryptographic Validation Test System Generators and Validators

    • catalog.data.gov
    • data.nist.gov
    • +1more
    Updated Jul 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2022). Automated Cryptographic Validation Test System Generators and Validators [Dataset]. https://catalog.data.gov/dataset/automated-cryptographic-validation-test-system-generators-and-validators
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    This is a program that takes in a description of a cryptographic algorithm implementation's capabilities, and generates test vectors to ensure the implementation conforms to the standard. After generating the test vectors, the program also validates the correctness of the responses from the user.

  11. Training and Validation Datasets for Neural Network to Fill in Missing Data...

    • catalog.data.gov
    • gimi9.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2025). Training and Validation Datasets for Neural Network to Fill in Missing Data in EBSD Maps [Dataset]. https://catalog.data.gov/dataset/training-and-validation-datasets-for-neural-network-to-fill-in-missing-data-in-ebsd-maps
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    This dataset consists of the synthetic electron backscatter diffraction (EBSD) maps generated for the paper, titled "Hybrid Algorithm for Filling in Missing Data in Electron Backscatter Diffraction Maps" by Emmanuel Atindama, Conor Miller-Lynch, Huston Wilhite, Cody Mattice, Günay Doğan, and Prashant Athavale. The EBSD maps were used to train, test, and validate a neural network algorithm to fill in missing data points in a given EBSD map.The dataset includes 8000 maps for training, 1000 maps for testing, 2000 maps for validation. The dataset also includes noise-added versions of the maps, namely, one more map per each clean map.

  12. Nested cross validation is overzelous

    • figshare.com
    txt
    Updated Feb 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacques Wainer (2021). Nested cross validation is overzelous [Dataset]. http://doi.org/10.6084/m9.figshare.3457238.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 27, 2021
    Dataset provided by
    figshare
    Authors
    Jacques Wainer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and programs for the paper "Nested cross-validation when selecting machine learning algorithms is overzealous"

  13. t

    FAIR Dataset for Disease Prediction in Healthcare Applications

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf (2025). FAIR Dataset for Disease Prediction in Healthcare Applications [Dataset]. http://doi.org/10.70124/5n77a-dnf02
    Explore at:
    csv, json, bin, pngAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    TU Wien
    Authors
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Description

    Context and Methodology

    • Research Domain/Project:
      This dataset was created for a machine learning experiment aimed at developing a classification model to predict outcomes based on a set of features. The primary research domain is disease prediction in patients. The dataset was used in the context of training, validating, and testing.

    • Purpose of the Dataset:
      The purpose of this dataset is to provide training, validation, and testing data for the development of machine learning models. It includes labeled examples that help train classifiers to recognize patterns in the data and make predictions.

    • Dataset Creation:
      Data preprocessing steps involved cleaning, normalization, and splitting the data into training, validation, and test sets. The data was carefully curated to ensure its quality and relevance to the problem at hand. For any missing values or outliers, appropriate handling techniques were applied (e.g., imputation, removal, etc.).

    Technical Details

    • Structure of the Dataset:
      The dataset consists of several files organized into folders by data type:

      • Training Data: Contains the training dataset used to train the machine learning model.

      • Validation Data: Used for hyperparameter tuning and model selection.

      • Test Data: Reserved for final model evaluation.

      Each folder contains files with consistent naming conventions for easy navigation, such as train_data.csv, validation_data.csv, and test_data.csv. Each file follows a tabular format with columns representing features and rows representing individual data points.

    • Software Requirements:
      To open and work with this dataset, you need VS Code or Jupyter, which could include tools like:

      • Python (with libraries such as pandas, numpy, scikit-learn, matplotlib, etc.)

    Further Details

    • Reusability:
      Users of this dataset should be aware that it is designed for machine learning experiments involving classification tasks. The dataset is already split into training, validation, and test subsets. Any model trained with this dataset should be evaluated using the test set to ensure proper validation.

    • Limitations:
      The dataset may not cover all edge cases, and it might have biases depending on the selection of data sources. It's important to consider these limitations when generalizing model results to real-world applications.

  14. d

    Data from: Dead Tree Detection Validation Data from Sequoia and Kings Canyon...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Dead Tree Detection Validation Data from Sequoia and Kings Canyon national parks [Dataset]. https://catalog.data.gov/dataset/dead-tree-detection-validation-data-from-sequoia-and-kings-canyon-national-parks
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Most of these data were collected in order to create a database of tree locations for use in calibrating remote sensing tools and products, particularly dead tree detection tools and canopy species maps. Data include tree locations, species identification, and status (live, dead, and, if dead, sometimes includes information on foliage and twig retention). They are a collection of different sampling efforts performed over several years, starting in a period of severe drought mortality. One csv table is included that shows data and validation results for an additional dataset that was used to test the NAIP derived dead tree detection model that is associated with this data release. Locations are not included for that dataset.

  15. d

    Data from: NWEI Azura RTI 1/20th Model Validation Wave Tank Test Data

    • catalog.data.gov
    • mhkdr.openei.org
    • +2more
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Northwest Energy Innovations (2025). NWEI Azura RTI 1/20th Model Validation Wave Tank Test Data [Dataset]. https://catalog.data.gov/dataset/nwei-azura-rti-1-20th-model-validation-wave-tank-test-data-e6ff6
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    Northwest Energy Innovations
    Description

    Data from the 1/20th wave tank test of the RTI model. Northwest Energy Innovations (NWEI) has licensed intellectual property from RTI, and modified the PTO and retested the 1/20th RTI model that was tested as part of the Wave Energy Prize. The goal of the test was to validate NWEI's simulation models of the model. The test occurred at the University of Maine in Orono (UMO).

  16. H

    Replication data for: An Unbiased Model Selection Test Using...

    • dataverse.harvard.edu
    Updated Jul 26, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bruce A. Desmarais; Jeffrey J. Harden (2013). Replication data for: An Unbiased Model Selection Test Using Cross-Validation [Dataset]. http://doi.org/10.7910/DVN/9HUSSZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 26, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Bruce A. Desmarais; Jeffrey J. Harden
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Social scientists often consider multiple empirical models of the same process. When these models are parametric and non-nested, the null hypothesis that two models fit the data equally well is commonly tested using methods introduced by Vuong (Econometrica 57(2):307–333, 1989) and Clarke (Am J Political Sci 45(3):724–744, 2001; J Confl Resolut 47(1):72–93, 2003; Political Anal 15(3):347–363, 2007). The objective of each is to compare the Kullback–Leibler Divergence (KLD) of the two models from the true model that generated the data. Here we show that both of these tests are based upon a biased estimator of the KLD, the individual log-likelihood contributions, and that the Clarke test is not proven to be consistent for the difference in KLDs. As a solution, we derive a test based upon cross- validated log-likelihood contributions, which represent an unbiased KLD estimate. We demonstrate the CVDM test’s superior performance via simulation, then apply it to two empirical examples from political science. We find that the test’s selection can diverge from those of the Vuong and Clarke tests and that this can ultimately lead to differences in substantive conclusions.

  17. d

    Data from: Development of a Mobile Robot Test Platform and Methods for...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Development of a Mobile Robot Test Platform and Methods for Validation of Prognostics-Enabled Decision Making Algorithms [Dataset]. https://catalog.data.gov/dataset/development-of-a-mobile-robot-test-platform-and-methods-for-validation-of-prognostics-enab
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    As fault diagnosis and prognosis systems in aerospace applications become more capable, the ability to utilize information supplied by them becomes increasingly important. While certain types of vehicle health data can be effectively processed and acted upon by crew or support personnel, others, due to their complexity or time constraints, require either automated or semi-automated reasoning. Prognostics-enabled Decision Making (PDM) is an emerging research area that aims to integrate prognostic health information and knowledge about the future operating conditions into the process of selecting subsequent actions for the system. The newly developed PDM algorithms require suitable software and hardware platforms for testing under realistic fault scenarios. The paper describes the development of such a platform, based on the K11 planetary rover prototype. A variety of injectable fault modes are being investigated for electrical, mechanical, and power subsystems of the testbed, along with methods for data collection and processing. In addition to the hardware platform, a software simulator with matching capabilities has been developed. The simulator allows for prototyping and initial validation of the algorithms prior to their deployment on the K11. The simulator is also available to the PDM algorithms to assist with the reasoning process. A reference set of diagnostic, prognostic, and decision making algorithms is also described, followed by an overview of the current test scenarios and the results of their execution on the simulator.

  18. Metatasks for Auto-Sklearn 1 - ROC AUC and Balanced Accuracy

    • figshare.com
    bin
    Updated Jul 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lennart Purucker (2023). Metatasks for Auto-Sklearn 1 - ROC AUC and Balanced Accuracy [Dataset]. http://doi.org/10.6084/m9.figshare.23613627.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Lennart Purucker
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Prediction Data of Base Models from Auto-Sklearn 1 on 71 classification datasets from the AutoML Benchmark for Balanced Accuracy and ROC AUC.

    The files of this figshare item include data that was collected for the paper:

    Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML, Lennart Purucker, Lennart Schneider, Marie Anastacio, Joeran Beel, Bernd Bischl, Holger Hoos, Second International Conference on Automated Machine Learning, 2023.

    The data was stored and used with the assembled framework: https://github.com/ISG-Siegen/assembled.

    In detail, the data contains the predictions of base models on validation and test as produced by running Auto-Sklearn 1 for 4 hours. Such prediction data is included for each model produced by Auto-Sklearn 1 on each fold of 10-fold cross-validation on the 71 classification datasets from the AutoML Benchmark. The data exists for two metrics (ROC AUC and Balanced Accuracy). More details can be found in the paper.

    The data was collected by code created for the paper and is available in its reproducibility repository: https://doi.org/10.6084/m9.figshare.23613624.

    Its usage is intended for but not limited to using assembled to evaluate post hoc ensembling methods for AutoML.

    Details The link above points to a hosted server that facilitates the download. We opted for a hosted server, as we found no other suitable solution to share these large files (due to file size or storage limits) for a reasonable price. If you want to obtain the data in another way or know of a more suitable alternative, please contact Lennart Purucker.

    The link resolves to a directory containing the following:

    example_metatasks: contains an example metatask for test purposes before committing to downloading all files.
    metatasks_roc_auc.zip: The Metatasks obtained by running Auto-Sklearn 1 for ROC AUC. metatasks_bacc.zip: The Metatasks obtained by running Auto-Sklearn 1 for Balanced Accuracy.

    The size after unzipping the entire file is:

    metatasks_roc_auc.zip: ~450GB metatasks_bacc.zip: ~330GB

    We suggest extracting only files that are of interest from the .zip archive, as these can be much smaller in size and might suffice for experiments.

    The metatask .zip files contain 2 subdirectories for Metatasks produced based on TopN or SiloTopN pruning (see paper for details). In each of these subdirectories, 2 files per metatask exist. One .json file with metadata information and a .hdf or .csv file containing the prediction data. The details on how this should be read and used as a Metatask can be found in the assembled framework and the reproducibility repository. To obtain the data without Metataks, we advise looking at the file content and metadata individually or parsing them by using Metatasks first.

  19. Dog vs Cat Images Data

    • kaggle.com
    zip
    Updated Sep 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kunal Gupta (2020). Dog vs Cat Images Data [Dataset]. https://www.kaggle.com/kunalgupta2616/dog-vs-cat-images-data
    Explore at:
    zip(1038798343 bytes)Available download formats
    Dataset updated
    Sep 1, 2020
    Authors
    Kunal Gupta
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Description

    Brief

    The data consist of 45.5K images of dogs and cats well distributed into 3 different sets. This is the first Dataset uploaded by me at Kaggle.

    Download Api

    > kaggle datasets download -d kunalgupta2616/dog-vs-cat-images-data

    Content

    Train Data - consist of 25000 images divided into equal half (12500 * 2) of cats and dogs images in separate directories.

    Validation Data - consist of 8000 images divided into equal half (4000 * 2) of cats and dogs images in separate directories.

    Test Data - consist of 12500 images of cats and dogs images.

    sampleSubmission.csv - The submission file for the test data which can be found at link given under Acknowledgements.

    Acknowledgements

    This is an improvement to the dataset from the competition that can be found at this link. in terms of addition of more data and hierarchical distribution.

  20. Test Data Management Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated May 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Test Data Management Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (Australia, China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/test-data-management-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Test Data Management Market Size 2025-2029

    The test data management market size is forecast to increase by USD 727.3 million, at a CAGR of 10.5% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of automation by enterprises to streamline their testing processes. The automation trend is fueled by the growing consumer spending on technological solutions, as businesses seek to improve efficiency and reduce costs. However, the market faces challenges, including the lack of awareness and standardization in test data management practices. This obstacle hinders the effective implementation of test data management solutions, requiring companies to invest in education and training to ensure successful integration. To capitalize on market opportunities and navigate challenges effectively, businesses must stay informed about emerging trends and best practices in test data management. By doing so, they can optimize their testing processes, reduce risks, and enhance overall quality.

    What will be the Size of the Test Data Management Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume and complexity of data. Data exploration and analysis are at the forefront of this dynamic landscape, with data ethics and governance frameworks ensuring data transparency and integrity. Data masking, cleansing, and validation are crucial components of data management, enabling data warehousing, orchestration, and pipeline development. Data security and privacy remain paramount, with encryption, access control, and anonymization key strategies. Data governance, lineage, and cataloging facilitate data management software automation and reporting. Hybrid data management solutions, including artificial intelligence and machine learning, are transforming data insights and analytics. Data regulations and compliance are shaping the market, driving the need for data accountability and stewardship. Data visualization, mining, and reporting provide valuable insights, while data quality management, archiving, and backup ensure data availability and recovery. Data modeling, data integrity, and data transformation are essential for data warehousing and data lake implementations. Data management platforms are seamlessly integrated into these evolving patterns, enabling organizations to effectively manage their data assets and gain valuable insights. Data management services, cloud and on-premise, are essential for organizations to adapt to the continuous changes in the market and effectively leverage their data resources.

    How is this Test Data Management Industry segmented?

    The test data management industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ApplicationOn-premisesCloud-basedComponentSolutionsServicesEnd-userInformation technologyTelecomBFSIHealthcare and life sciencesOthersSectorLarge enterpriseSMEsGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACAustraliaChinaIndiaJapanRest of World (ROW).

    By Application Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the realm of data management, on-premises testing represents a popular approach for businesses seeking control over their infrastructure and testing process. This approach involves establishing testing facilities within an office or data center, necessitating a dedicated team with the necessary skills. The benefits of on-premises testing extend beyond control, as it enables organizations to upgrade and configure hardware and software at their discretion, providing opportunities for exploration testing. Furthermore, data security is a significant concern for many businesses, and on-premises testing alleviates the risk of compromising sensitive information to third-party companies. Data exploration, a crucial aspect of data analysis, can be carried out more effectively with on-premises testing, ensuring data integrity and security. Data masking, cleansing, and validation are essential data preparation techniques that can be executed efficiently in an on-premises environment. Data warehousing, data pipelines, and data orchestration are integral components of data management, and on-premises testing allows for seamless integration and management of these elements. Data governance frameworks, lineage, catalogs, and metadata are essential for maintaining data transparency and compliance. Data security, encryption, and access control are paramount, and on-premises testing offers greater control over these aspects. Data reporting, visualization, and insigh

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson (2023). Machine learning algorithm validation with a limited sample size [Dataset]. http://doi.org/10.1371/journal.pone.0224365
Organization logo

Machine learning algorithm validation with a limited sample size

Explore at:
text/x-pythonAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Andrius Vabalas; Emma Gowen; Ellen Poliakoff; Alexander J. Casson
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.

Search
Clear search
Close search
Google apps
Main menu