19 datasets found
  1. Overwrite Hosted Feature Services, v2.1.4

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Apr 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Overwrite Hosted Feature Services, v2.1.4 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/d45f80eb53c748e7aa3d938a46b48836
    Explore at:
    Dataset updated
    Apr 16, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Want to keep the data in your Hosted Feature Service current? Not interested in writing a lot of code?Leverage this Python Script from the command line, Windows Scheduled Task, or from within your own code to automate the replacement of data in an existing Hosted Feature Service. It can also be leveraged by your Notebook environment and automatically managed by the MNCD Tool!See the Sampler Notebook that features the OverwriteFS tool run from Online to update a Feature Service. It leverages MNCD to cache the OverwriteFS script for import to the Notebook. A great way to jump start your Feature Service update workflow! RequirementsPython v3.xArcGIS Python APIStored Connection Profile, defined by Python API 'GIS' module. Also accepts 'pro', to specify using the active ArcGIS Pro connection. Will require ArcGIS Pro and Arcpy!Pre-Existing Hosted Feature ServiceCapabilitiesOverwrite a Feature Service, refreshing the Service Item and DataBackup and reapply Service, Layer, and Item properties - New at v2.0.0Manage Service to Service or Service to Data relationships - New at v2.0.0Repair Lost Service File Item to Service Relationships, re-enabling Service Overwrite - New at v2.0.0'Swap Layer' capability for Views, allowing two Services to support a View, acting as Active and Idle role during Updates - New at v2.0.0Data Conversion capability, able to invoke following a download and before Service update - New at v2.0.0Includes 'Rss2Json' Conversion routine, able to read a RSS or GeoRSS source and generate GeoJson for Service Update - New at v2.0.0Renamed 'Rss2Json' to 'Xml2GeoJSON' for its enhanced capabilities, 'Rss2Json' remains for compatability - Revised at v2.1.0Added 'Json2GeoJSON' Conversion routine, able to read and manipulate Json or GeoJSON data for Service Updates - New at v2.1.0Can update other File item types like PDF, Word, Excel, and so on - New at v2.1.0Supports ArcGIS Python API v2.0 - New at v2.1.2RevisionsSep 29, 2021: Long awaited update to v2.0.0!Sep 30, 2021: v2.0.1, Patch to correct Outcome Status when download or Coversion resulted in no change. Also updated documentation.Oct 7, 2021: v2.0.2, workflow Patch correcting Extent update of Views when Overwriting Service, discovered following recent ArcGIS Online update. Enhancements to 'datetimeUtil' Support script.Nov 30, 2021: v2.1.0, added new 'Json2GeoJSON' Converter, enhanced 'Xml2GeoJSON' Converter, retired 'Rss2Json' Converter, added new Option Switches 'IgnoreAge' and 'UpdateTarget' for source age control and QA/QC workflows, revised Optimization logic and CRC comparison on downloads.Dec 1, 2021: v2.1.1, Only a patch to Conversion routines: Corrected handling of null Z-values in Geometries (discovered immediately following release 2.1.0), improve error trapping while processing rows, and added deprecation message to retired 'Rss2Json' conversion routine.Feb 22, 2022: v2.1.2, Patch to detect and re-apply case-insensitive field indexes. Update to allow Swapping Layers to Service without an associated file item. Added cache refresh following updates. Patch to support Python API 2.0 service 'table' property. Patches to 'Json2GeoJSON' and 'Xml2GeoJSON' converter routines.Sep 5, 2024: v2.1.4, Patch service manager refresh failure issue. Added trace report to Convert execution on exception. Set 'ignore-DataItemCheck' property to True when 'GetTarget' action initiated. Hardened Async job status check. Update 'overwriteFeatureService' to support GeoPackage type and file item type when item.name includes a period, updated retry loop to try one final overwrite after del, fixed error stop issue on failed overwrite attempts. Removed restriction on uploading files larger than 2GB. Restores missing 'itemInfo' file on service File items. Corrected false swap success when view has no layers. Lifted restriction of Overwrite/Swap Layers for OGC. Added 'serviceDescription' to service detail backup. Added 'thumbnail' to item backup/restore logic. Added 'byLayerOrder' parameter to 'swapFeatureViewLayers'. Added 'SwapByOrder' action switch. Patch added to overwriteFeatureService 'status' check. Patch for June 2024 update made to 'managers.overwrite' API script that blocks uploads > 25MB, API v2.3.0.3. Patch 'overwriteFeatureService' to correctly identify overwrite file if service has multiple Service2Data relationships.Includes documentation updates!

  2. a

    Shaded Relief from LiDAR (Image Service)

    • geo-massdot.opendata.arcgis.com
    • gis.data.mass.gov
    Updated Nov 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2021). Shaded Relief from LiDAR (Image Service) [Dataset]. https://geo-massdot.opendata.arcgis.com/datasets/7377a612845a493c9987216a67a9919c
    Explore at:
    Dataset updated
    Nov 23, 2021
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This shaded relief image was generated from the lidar-based bare-earth digital elevation model (DEM). A shaded relief image provides an illustration of variations in elevation using artificial shadows. Based on a specified position of the sun, areas that would be in sunlight are highlighted and areas that would be in shadow are shaded. In this instance, the position of the sun was assumed to be 45 degrees above the northwest horizon.The shaded relief image shows areas that are not in direct sunlight as shadowed. It does not show shadows that would be cast by topographic features onto the surrounding surface.Using ERDAS IMAGINE, a 3X3 neighborhood around each pixel in the DEM was analyzed, and a comparison was made between the sun's position and the angle that each pixel faces. The pixel was then assigned a value between -1 and +1 to represent the amount of light reflected. Negative numbers and zero values represent shadowed areas, and positive numbers represent sunny areas. In ArcGIS Desktop 10.7.1, the image was converted to a JPEG 2000 format with values from 0 (black) to 255 (white).See the MassGIS datalayer page to download the data as a JPEG 2000 image file.View this service in the Massachusetts Elevation Finder.MassGIS has also published a Lidar Shaded Relief tile service (cache) hosted in ArcGIS Online.

  3. Register of Stored Value Facility Licensees in Hong Kong and China

    • opendata.esrichina.hk
    • hub.arcgis.com
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2024). Register of Stored Value Facility Licensees in Hong Kong and China [Dataset]. https://opendata.esrichina.hk/maps/60eba292a25b45a8955edd7ffbfda841
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This web map shows Register of Stored Value Facility Licensees in Hong Kong and China. It is created by Hong Kong Monetary Authority under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of CSDI Portal at https://portal.csdi.gov.hk.

  4. m

    MDOT SHA 2050 Mean Sea Level 10% Annual Chance (10.Year Storm) - Flood Depth...

    • data.imap.maryland.gov
    Updated Oct 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2019). MDOT SHA 2050 Mean Sea Level 10% Annual Chance (10.Year Storm) - Flood Depth Grid [Dataset]. https://data.imap.maryland.gov/datasets/051fa19c03014635a55c41325f48aa5e
    Explore at:
    Dataset updated
    Oct 8, 2019
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    Esri ArcGIS Online (AGOL) Imagery Layer which includes the MDOT SHA 2050 Mean Sea Level 10% Annual Chance (10.Year Storm) - Flood Depth Grid geospatial data product.MDOT SHA 2050 Mean Sea Level 10% Annual Chance (10.Year Storm) - Flood Depth Grid consists of a depth grid image service depicting conditions of sea level change based on the 10% annual chance event (10-Year Storm) scenario for coastal areas throughout the State of Maryland in year 2050. This data product supports Maryland Department of Transportation State Highway Administration (MDOT SHA) leadership and planners as they endeavor to mitigate or prevent the impacts of sea level change resulting from land surface subsidence and rising sea levels.MDOT SHA 2050 Mean Sea Level 10% Annual Chance (10.Year Storm) - Flood Depth Grid data was produced as a result of efforts by the Maryland Department of Transportation State Highway Administration (MDOT SHA), Eastern Shore Regional GIS Cooperative (ESRGC), Salisbury University (SU), United States Corps of Engineers (USACE), National Oceanic & Atmospheric Administration (NOAA), and the United States Geological Survey (USGS). The US Army Corps of Engineers provide the sea level change estimate. Sea level change is localized using water elevations collected from a qualifying National Oceanic and Atmospheric Administration (NOAA) tidal reference station - NOAA observations are transformed from tidal datum to North American Vertical Datum of 1988. A final correction for glacial isostatic adjustment and land creates an sea level change value for the official project year, 2050.MDOT SHA 2050 Mean Sea Level 10% Annual Chance (10.Year Storm) - Flood Depth Grid data was task-based, and will only be updated on an As-Needed basis where necessary.Last Updated: 10/07/2019For additional information, contact the MDOT SHA Geospatial Technologies:Email: GIS@mdot.maryland.govFor information related to the data, visit the Eastern Shore Regional GIS Cooperative (ESRGC) websiteWebsite: https:www.esrgc.org/mapServices/MDOT SHA Geospatial Data Legal Disclaimer:The Maryland Department of Transportation State Highway Administration (MDOT SHA) makes no warranty, expressed or implied, as to the use or appropriateness of geospatial data, and there are no warranties of merchantability or fitness for a particular purpose or use. The information contained in geospatial data is from publicly available sources, but no representation is made as to the accuracy or completeness of geospatial data. MDOT SHA shall not be subject to liability for human error, error due to software conversion, defect, or failure of machines, or any material used in the connection with the machines, including tapes, disks, CD-ROMs or DVD-ROMs and energy. MDOT SHA shall not be liable for any lost profits, consequential damages, or claims against MDOT SHA by third parties.

  5. Summary Statistics of Valuation List by district in Hong Kong

    • opendata.esrichina.hk
    • hub.arcgis.com
    Updated Mar 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2024). Summary Statistics of Valuation List by district in Hong Kong [Dataset]. https://opendata.esrichina.hk/datasets/summary-statistics-of-valuation-list-by-district-in-hong-kong
    Explore at:
    Dataset updated
    Mar 26, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This layer shows the summary statistics on the number of assessments and total rateable values in the Valuation List by district in Hong Kong. It is a subset of data made available by the Rating and Valuation Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.

  6. Land Cover 2050 - Regional

    • africageoportal.com
    • uneca.africageoportal.com
    • +8more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Regional [Dataset]. https://www.africageoportal.com/datasets/ec4d1d1fe03a4e62997a7a9397cf644d
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this regional model layer when performing analysis within a single continent. This layer displays a single global land cover map that is modeled by region for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  7. n

    Napa County Public Parcels

    • gisdata.napacounty.gov
    Updated May 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Napa County GIS | ArcGIS Online (2025). Napa County Public Parcels [Dataset]. https://gisdata.napacounty.gov/datasets/napa-county-public-parcels
    Explore at:
    Dataset updated
    May 23, 2025
    Dataset authored and provided by
    Napa County GIS | ArcGIS Online
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Description

    Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. Parcel boundaries in GIS are created and maintained by the Assessor’s Division Mapping section and Information Technology Services. There are approximately 51,300 real property parcels in Napa County. Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. GIS parcel boundaries are maintained by the Information Technology Services GIS team. Assessor Parcel Maps are created and maintained by the Assessor Division Mapping Section. Each parcel has an Assessor Parcel Number (APN) that is its unique identifier. The APN is the link to various Napa County databases containing information such as owner name, situs address, property value, land use, zoning, flood data, and other related information. Data for this map service is sourced from the Napa County Parcels dataset which is updated nightly with any recent changes made by the mapping team. There may at times be a delay between when a document is recorded and when the new parcel boundary configuration and corresponding information is available in the online GIS parcel viewer.From 1850 to early 1900s assessor staff wrote the name of the property owner and the property value on map pages. They began using larger maps, called “tank maps” because of the large steel cabinet they were kept in, organized by school district (before unification) on which names and values were written. In the 1920s, the assessor kept large books of maps by road district on which names were written. In the 1950s, most county assessors contracted with the State Board of Equalization for board staff to draw standardized 11x17 inch maps following the provisions of Assessor Handbook 215. Maps were originally drawn on linen. By the 1980’s Assessor maps were being drawn on mylar rather than linen. In the early 1990s Napa County transitioned from drawing on mylar to creating maps in AutoCAD. When GIS arrived in Napa County in the mid-1990s, the AutoCAD images were copied over into the GIS parcel layer. Sidwell, an independent consultant, was then contracted by the Assessor’s Office to convert these APN files into the current seamless ArcGIS parcel fabric for the entire County. Beginning with the 2024-2025 assessment roll, the maps are being drawn directly in the parcel fabric layer.Parcels in the GIS parcel fabric are drawn according to the legal description using coordinate geometry (COGO) drawing tools and various reference data such as Public Lands Survey section boundaries and road centerlines. The legal descriptions are not defined by the GIS parcel fabric. Any changes made in the GIS parcel fabric via official records, filed maps, and other source documents are uploaded overnight. There is always at least a 6-month delay between when a document is recorded and when the new parcel configuration and corresponding information is available in the online parcel viewer for search or download.Parcel boundary accuracy can vary significantly, with errors ranging from a few feet to several hundred feet. These distortions are caused by several factors such as: the map projection - the error derived when a spherical coordinate system model is projected into a planar coordinate system using the local projected coordinate system; and the ground to grid conversion - the distortion between ground survey measurements and the virtual grid measurements. The aim of the parcel fabric is to construct a visual interpretation that is adequate for basic geographic understanding. This digital data is intended for illustration and demonstration purposes only and is not considered a legal resource, nor legally authoritative.SFAP & CFAP DISCLAIMER: Per the California Code, RTC 606. some legal parcels may have been combined for assessment purposes (CFAP) or separated for assessment purposes (SFAP) into multiple parcels for a variety of tax assessment reasons. SFAP and CFAP parcels are assigned their own APN number and primarily result from a parcel being split by a tax rate area boundary, due to a recorded land use lease, or by request of the property owner. Assessor parcel (APN) maps reflect when parcels have been separated or combined for assessment purposes, and are one legal entity. The goal of the GIS parcel fabric data is to distinguish the SFAP and CFAP parcel configurations from the legal configurations, to convey the legal parcel configurations. This workflow is in progress. Please be advised that while we endeavor to restore SFAP and CFAP parcels back to their legal configurations in the primary parcel fabric layer, SFAP and CFAP parcels may be distributed throughout the dataset. Parcels that have been restored to their legal configurations, do not reflect the SFAP or CFAP parcel configurations that correspond to the current property tax delineations. We intend for parcel reports and parcel data to capture when a parcel has been separated or combined for assessment purposes, however in some cases, information may not be available in GIS for the SFAP/CFAP status of a parcel configuration shown. For help or questions regarding a parcel’s SFAP/CFAP status, or property survey data, please visit Napa County’s Surveying Services or Property Mapping Information. For more information you can visit our website: When a Parcel is Not a Parcel | Napa County, CA

    Data last synced 11-21-2025 04:27. Data synced on a Weekly interval.

  8. m

    MDOT SHA 2050 Mean Higher High Water 0.2% Annual Chance (500YR Storm) -...

    • data.imap.maryland.gov
    • hub.arcgis.com
    • +1more
    Updated Oct 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2019). MDOT SHA 2050 Mean Higher High Water 0.2% Annual Chance (500YR Storm) - Depth Grid [Dataset]. https://data.imap.maryland.gov/datasets/maryland::mdot-sha-2050-mean-higher-high-water-0-2-annual-chance-500yr-storm-depth-grid/about
    Explore at:
    Dataset updated
    Oct 8, 2019
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    ArcGIS Online (AGOL) Feature Layer which includes the MDOT SHA 2050 Mean Higher High Water 0.2% Annual Chance (500YR Storm) - Depth Grid geospatial data product.MDOT SHA 2050 Mean Higher High Water 0.2% Annual Chance (500YR Storm) - Depth Grid consists of a depth grid image service depicting conditions of mean higher high water based on the 0.2% annual chance (500-Year Storm) event for coastal areas throughout the State of Maryland in year 2050. This data product supports Maryland Department of Transportation State Highway Administration (MDOT SHA) leadership and planners as they endeavor to mitigate or prevent the impacts of sea level change resulting from land surface subsidence and rising sea levels.MDOT SHA 2050 Mean Higher High Water 0.2% Annual Chance (500YR Storm) - Depth Grid data was produced as a result of efforts by the Maryland Department of Transportation State Highway Administration (MDOT SHA), Eastern Shore Regional GIS Cooperative (ESRGC), Salisbury University (SU), United States Corps of Engineers (USACE), National Oceanic & Atmospheric Administration (NOAA), and the United States Geological Survey (USGS). The US Army Corps of Engineers provide the sea level change estimate. Sea level change is localized using water elevations collected from a qualifying National Oceanic and Atmospheric Administration (NOAA) tidal reference station - NOAA observations are transformed from tidal datum to North American Vertical Datum of 1988. A final correction for glacial isostatic adjustment and land creates an sea level change value for the official project year, 2050.MDOT SHA 2050 Mean Higher High Water 0.2% Annual Chance (500YR Storm) - Depth Grid data was task-based, and will only be updated on an As-Needed basis where necessary.Last Updated: 10/07/2019For additional information, contact the MDOT SHA Geospatial Technologies:Email: GIS@mdot.maryland.govFor information related to the data, visit the Eastern Shore Regional GIS Cooperative (ESRGC) websiteWebsite: https:www.esrgc.org/mapServices/For additional data, visit the MDOT GIS Open Data Portal:Website: https://data.imap.maryland.gov/pages/mdot/For additional information related to the Maryland Department of Transportation (MDOT):Website: https://www.mdot.maryland.gov/For additional information related to the Maryland Department of Transportation State Highway Administration (MDOT SHA):Website: https://www.roads.maryland.gov/Home.aspxMDOT SHA Geospatial Data Legal Disclaimer:The Maryland Department of Transportation State Highway Administration (MDOT SHA) makes no warranty, expressed or implied, as to the use or appropriateness of geospatial data, and there are no warranties of merchantability or fitness for a particular purpose or use. The information contained in geospatial data is from publicly available sources, but no representation is made as to the accuracy or completeness of geospatial data. MDOT SHA shall not be subject to liability for human error, error due to software conversion, defect, or failure of machines, or any material used in the connection with the machines, including tapes, disks, CD-ROMs or DVD-ROMs and energy. MDOT SHA shall not be liable for any lost profits, consequential damages, or claims against MDOT SHA by third parties.

  9. m

    MDOT SHA 2050 Mean Higher High Water 10% Annual Chance (10YR Storm) - Depth...

    • data.imap.maryland.gov
    • hub.arcgis.com
    • +1more
    Updated Oct 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2019). MDOT SHA 2050 Mean Higher High Water 10% Annual Chance (10YR Storm) - Depth Grid [Dataset]. https://data.imap.maryland.gov/datasets/cfc705422fc94fb38eeb303c2d3f92c5
    Explore at:
    Dataset updated
    Oct 8, 2019
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    ArcGIS Online (AGOL) Feature Layer which includes the MDOT SHA 2050 Mean Higher High Water 10% Annual Chance (10YR Storm) - Depth Grid geospatial data product.MDOT SHA 2050 Mean Higher High Water 10% Annual Chance (10YR Storm) - Depth Grid consists of a depth grid image service depicting conditions of mean higher high water based on the 10% annual chance (10-Year Storm) event for coastal areas throughout the State of Maryland in year 2050. This data product supports Maryland Department of Transportation State Highway Administration (MDOT SHA) leadership and planners as they endeavor to mitigate or prevent the impacts of sea level change resulting from land surface subsidence and rising sea levels.MDOT SHA 2050 Mean Higher High Water 10% Annual Chance (10YR Storm) - Depth Grid data was produced as a result of efforts by the Maryland Department of Transportation State Highway Administration (MDOT SHA), Eastern Shore Regional GIS Cooperative (ESRGC), Salisbury University (SU), United States Corps of Engineers (USACE), National Oceanic & Atmospheric Administration (NOAA), and the United States Geological Survey (USGS). The US Army Corps of Engineers provide the sea level change estimate. Sea level change is localized using water elevations collected from a qualifying National Oceanic and Atmospheric Administration (NOAA) tidal reference station - NOAA observations are transformed from tidal datum to North American Vertical Datum of 1988. A final correction for glacial isostatic adjustment and land creates an sea level change value for the official project year, 2050.MDOT SHA 2050 Mean Higher High Water 10% Annual Chance (10YR Storm) - Depth Grid data was task-based, and will only be updated on an As-Needed basis where necessary.Last Updated: 10/07/2019For additional information, contact the MDOT SHA Geospatial Technologies:Email: GIS@mdot.maryland.govFor information related to the data, visit the Eastern Shore Regional GIS Cooperative (ESRGC) websiteWebsite: https:www.esrgc.org/mapServices/For additional data, visit the MDOT GIS Open Data Portal:Website: https://data.imap.maryland.gov/pages/mdot/For additional information related to the Maryland Department of Transportation (MDOT):Website: https://www.mdot.maryland.gov/For additional information related to the Maryland Department of Transportation State Highway Administration (MDOT SHA):Website: https://www.roads.maryland.gov/Home.aspxMDOT SHA Geospatial Data Legal Disclaimer:The Maryland Department of Transportation State Highway Administration (MDOT SHA) makes no warranty, expressed or implied, as to the use or appropriateness of geospatial data, and there are no warranties of merchantability or fitness for a particular purpose or use. The information contained in geospatial data is from publicly available sources, but no representation is made as to the accuracy or completeness of geospatial data. MDOT SHA shall not be subject to liability for human error, error due to software conversion, defect, or failure of machines, or any material used in the connection with the machines, including tapes, disks, CD-ROMs or DVD-ROMs and energy. MDOT SHA shall not be liable for any lost profits, consequential damages, or claims against MDOT SHA by third parties.

  10. B

    Toronto Land Use Spatial Data - parcel-level - (2019-2021)

    • borealisdata.ca
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Fortin (2023). Toronto Land Use Spatial Data - parcel-level - (2019-2021) [Dataset]. http://doi.org/10.5683/SP3/1VMJAG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2023
    Dataset provided by
    Borealis
    Authors
    Marcel Fortin
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Toronto
    Description

    Please note that this dataset is not an official City of Toronto land use dataset. It was created for personal and academic use using City of Toronto Land Use Maps (2019) found on the City of Toronto Official Plan website at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/official-plan-maps-copy, along with the City of Toronto parcel fabric (Property Boundaries) found at https://open.toronto.ca/dataset/property-boundaries/ and Statistics Canada Census Dissemination Blocks level boundary files (2016). The property boundaries used were dated November 11, 2021. Further detail about the City of Toronto's Official Plan, consolidation of the information presented in its online form, and considerations for its interpretation can be found at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/ Data Creation Documentation and Procedures Software Used The spatial vector data were created using ArcGIS Pro 2.9.0 in December 2021. PDF File Conversions Using Adobe Acrobat Pro DC software, the following downloaded PDF map images were converted to TIF format. 9028-cp-official-plan-Map-14_LandUse_AODA.pdf 9042-cp-official-plan-Map-22_LandUse_AODA.pdf 9070-cp-official-plan-Map-20_LandUse_AODA.pdf 908a-cp-official-plan-Map-13_LandUse_AODA.pdf 978e-cp-official-plan-Map-17_LandUse_AODA.pdf 97cc-cp-official-plan-Map-15_LandUse_AODA.pdf 97d4-cp-official-plan-Map-23_LandUse_AODA.pdf 97f2-cp-official-plan-Map-19_LandUse_AODA.pdf 97fe-cp-official-plan-Map-18_LandUse_AODA.pdf 9811-cp-official-plan-Map-16_LandUse_AODA.pdf 982d-cp-official-plan-Map-21_LandUse_AODA.pdf Georeferencing and Reprojecting Data Files The original projection of the PDF maps is unknown but were most likely published using MTM Zone 10 EPSG 2019 as per many of the City of Toronto's many datasets. They could also have possibly been published in UTM Zone 17 EPSG 26917 The TIF images were georeferenced in ArcGIS Pro using this projection with very good results. The images were matched against the City of Toronto's Centreline dataset found here The resulting TIF files and their supporting spatial files include: TOLandUseMap13.tfwx TOLandUseMap13.tif TOLandUseMap13.tif.aux.xml TOLandUseMap13.tif.ovr TOLandUseMap14.tfwx TOLandUseMap14.tif TOLandUseMap14.tif.aux.xml TOLandUseMap14.tif.ovr TOLandUseMap15.tfwx TOLandUseMap15.tif TOLandUseMap15.tif.aux.xml TOLandUseMap15.tif.ovr TOLandUseMap16.tfwx TOLandUseMap16.tif TOLandUseMap16.tif.aux.xml TOLandUseMap16.tif.ovr TOLandUseMap17.tfwx TOLandUseMap17.tif TOLandUseMap17.tif.aux.xml TOLandUseMap17.tif.ovr TOLandUseMap18.tfwx TOLandUseMap18.tif TOLandUseMap18.tif.aux.xml TOLandUseMap18.tif.ovr TOLandUseMap19.tif TOLandUseMap19.tif.aux.xml TOLandUseMap19.tif.ovr TOLandUseMap20.tfwx TOLandUseMap20.tif TOLandUseMap20.tif.aux.xml TOLandUseMap20.tif.ovr TOLandUseMap21.tfwx TOLandUseMap21.tif TOLandUseMap21.tif.aux.xml TOLandUseMap21.tif.ovr TOLandUseMap22.tfwx TOLandUseMap22.tif TOLandUseMap22.tif.aux.xml TOLandUseMap22.tif.ovr TOLandUseMap23.tfwx TOLandUseMap23.tif TOLandUseMap23.tif.aux.xml TOLandUseMap23.tif.ov Ground control points were saved for all georeferenced images. The files are the following: map13.txt map14.txt map15.txt map16.txt map17.txt map18.txt map19.txt map21.txt map22.txt map23.txt The City of Toronto's Property Boundaries shapefile, "property_bnds_gcc_wgs84.zip" were unzipped and also reprojected to EPSG 26917 (UTM Zone 17) into a new shapefile, "Property_Boundaries_UTM.shp" Mosaicing Images Once georeferenced, all images were then mosaiced into one image file, "LandUseMosaic20211220v01", within the project-generated Geodatabase, "Landuse.gdb" and exported TIF, "LandUseMosaic20211220.tif" Reclassifying Images Because the original images were of low quality and the conversion to TIF made the image colours even more inconsistent, a method was required to reclassify the images so that different land use classes could be identified. Using Deep learning Objects, the images were re-classified into useful consistent colours. Deep Learning Objects and Training The resulting mosaic was then prepared for reclassification using the Label Objects for Deep Learning tool in ArcGIS Pro. A training sample, "LandUseTrainingSamples20211220", was created in the geodatabase for all land use types as follows: Neighbourhoods Insitutional Natural Areas Core Employment Areas Mixed Use Areas Apartment Neighbourhoods Parks Roads Utility Corridors Other Open Spaces General Employment Areas Regeneration Areas Lettering (not a land use type, but an image colour (black), used to label streets). By identifying the letters, it then made the reclassification and vectorization results easier to clean up of unnecessary clutter caused by the labels of streets. Reclassification Once the training samples were created and saved, the raster was then reclassified using the Image Classification Wizard tool in ArcGIS Pro, using the Support...

  11. Register of SVF Licensees in Hong Kong

    • opendata.esrichina.hk
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2025). Register of SVF Licensees in Hong Kong [Dataset]. https://opendata.esrichina.hk/datasets/register-of-svf-licensees-in-hong-kong
    Explore at:
    Dataset updated
    Aug 21, 2025
    Dataset provided by
    美國環境系統研究所公司http://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This layer shows the locations of Principal Place of Business for Stored Value Facility (SVF) Licensees in Hong Kong. It is a set of data made available by the under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data is in GML format (Dataset URL: https://portal.csdi.gov.hk/geoportal/?lang=en&datasetId=hkma_rcd_1670990497383_66158) and has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.

  12. a

    MDOT SHA 2015 Mean Sea Level 1% Annual Chance (100YR Storm) - Depth Grid

    • hub.arcgis.com
    • data.imap.maryland.gov
    • +1more
    Updated Oct 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2019). MDOT SHA 2015 Mean Sea Level 1% Annual Chance (100YR Storm) - Depth Grid [Dataset]. https://hub.arcgis.com/datasets/53a3003554ac484b9920f4349ad59844
    Explore at:
    Dataset updated
    Oct 8, 2019
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    ArcGIS Online (AGOL) Feature Layer which includes the MDOT SHA 2015 Mean Sea Level 1% Annual Chance (100YR Storm) - Depth Grid geospatial data product.MDOT SHA 2015 Mean Sea Level 1% Annual Chance (100YR Storm) - Depth Grid consists of a depth grid image service depicting conditions of sea level change based on the 1% annual chance event (100-Year Storm) scenario for coastal areas throughout the State of Maryland in year 2015. This data product supports Maryland Department of Transportation State Highway Administration (MDOT SHA) leadership and planners as they endeavor to mitigate or prevent the impacts of sea level change resulting from land surface subsidence and rising sea levels.MDOT SHA 2015 Mean Sea Level 1% Annual Chance (100YR Storm) - Depth Grid data was produced as a result of efforts by the Maryland Department of Transportation State Highway Administration (MDOT SHA), Eastern Shore Regional GIS Cooperative (ESRGC), Salisbury University (SU), United States Corps of Engineers (USACE), National Oceanic & Atmospheric Administration (NOAA), and the United States Geological Survey (USGS). The US Army Corps of Engineers provide the sea level change estimate. Sea level change is localized using water elevations collected from a qualifying National Oceanic and Atmospheric Administration (NOAA) tidal reference station - NOAA observations are transformed from tidal datum to North American Vertical Datum of 1988. A final correction for glacial isostatic adjustment and land creates an sea level change value for the official project year, 2015.MDOT SHA 2015 Mean Sea Level 1% Annual Chance (100YR Storm) - Depth Grid data was task-based, and will only be updated on an As-Needed basis where necessary.Last Updated: 10/07/2019For additional information, contact the MDOT SHA Geospatial Technologies:Email: GIS@mdot.maryland.govFor information related to the data, visit the Eastern Shore Regional GIS Cooperative (ESRGC) websiteWebsite: https:www.esrgc.org/mapServices/For additional data, visit the MDOT GIS Open Data Portal:Website: https://data.imap.maryland.gov/pages/mdot/For additional information related to the Maryland Department of Transportation (MDOT):Website: https://www.mdot.maryland.gov/For additional information related to the Maryland Department of Transportation State Highway Administration (MDOT SHA):Website: https://www.roads.maryland.gov/Home.aspxMDOT SHA Geospatial Data Legal Disclaimer:The Maryland Department of Transportation State Highway Administration (MDOT SHA) makes no warranty, expressed or implied, as to the use or appropriateness of geospatial data, and there are no warranties of merchantability or fitness for a particular purpose or use. The information contained in geospatial data is from publicly available sources, but no representation is made as to the accuracy or completeness of geospatial data. MDOT SHA shall not be subject to liability for human error, error due to software conversion, defect, or failure of machines, or any material used in the connection with the machines, including tapes, disks, CD-ROMs or DVD-ROMs and energy. MDOT SHA shall not be liable for any lost profits, consequential damages, or claims against MDOT SHA by third parties.

  13. a

    United States of America Soil Survey Geographic Database (SSURGO) - Farmland...

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Jul 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). United States of America Soil Survey Geographic Database (SSURGO) - Farmland Class [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/datasets/united-states-of-america-soil-survey-geographic-database-ssurgo-farmland-class-1
    Explore at:
    Dataset updated
    Jul 14, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States
    Description

    The Farmland Protection Policy Act, part of the 1981 Farm Bill, is intended to limit federal activities that contribute to the unnecessary conversion of farmland to other uses. The law applies to construction projects funded by the federal government such as highways, airports, and dams, and to the management of federal lands. As part of the implementation of this law, the Natural Resources Conservation Service identifies high quality agricultural soils as prime farmland, unique farmland, and land of statewide or local importance. Each category may contain one or more limitations such as Prime Farmland if Irrigated. For a complete list of categories and definitions, see the National Soil Survey Handbook.All areas are prime farmlandFarmland of local importanceFarmland of statewide importanceFarmland of statewide importance, if drainedFarmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if irrigatedFarmland of statewide importance, if irrigated and drainedFarmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if irrigated and reclaimed of excess salts and sodiumFarmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if warm enoughFarmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing seasonFarmland of unique importanceNot prime farmlandPrime farmland if drainedPrime farmland if drained and either protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigatedPrime farmland if irrigated and drainedPrime farmland if irrigated and either protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigated and reclaimed of excess salts and sodiumPrime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60Prime farmland if protected from flooding or not frequently flooded during the growing seasonPrime farmland if subsoiled, completely removing the root inhibiting soil layerDataset SummaryPhenomenon Mapped: FarmlandUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for farmland class is derived from the gSSURGO map unit table field Farm Class (farmlndcl).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "farmland" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "farmland" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  14. a

    MDOT SHA 2015 Mean Sea Level 4% Annual Chance (25YR Storm) - Depth Grid

    • hub.arcgis.com
    • data.imap.maryland.gov
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2019). MDOT SHA 2015 Mean Sea Level 4% Annual Chance (25YR Storm) - Depth Grid [Dataset]. https://hub.arcgis.com/datasets/12d32e538a0846dca69b07235f5ce0e4
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    ArcGIS Online (AGOL) Feature Layer which includes the MDOT SHA 2015 Mean Sea Level 4% Annual Chance (25YR Storm) - Depth Grid geospatial data product.MDOT SHA 2015 Mean Sea Level 4% Annual Chance (25YR Storm) - Depth Grid consists of a depth grid image service depicting conditions of sea level change based on the 4% annual chance event (25-Year Storm) scenario for coastal areas throughout the State of Maryland in year 2015. This data product supports Maryland Department of Transportation State Highway Administration (MDOT SHA) leadership and planners as they endeavor to mitigate or prevent the impacts of sea level change resulting from land surface subsidence and rising sea levels.MDOT SHA 2015 Mean Sea Level 4% Annual Chance (25YR Storm) - Depth Grid data was produced as a result of efforts by the Maryland Department of Transportation State Highway Administration (MDOT SHA), Eastern Shore Regional GIS Cooperative (ESRGC), Salisbury University (SU), United States Corps of Engineers (USACE), National Oceanic & Atmospheric Administration (NOAA), and the United States Geological Survey (USGS). The US Army Corps of Engineers provide the sea level change estimate. Sea level change is localized using water elevations collected from a qualifying National Oceanic and Atmospheric Administration (NOAA) tidal reference station - NOAA observations are transformed from tidal datum to North American Vertical Datum of 1988. A final correction for glacial isostatic adjustment and land creates an sea level change value for the official project year, 2015.MDOT SHA 2015 Mean Sea Level 4% Annual Chance (25YR Storm) - Depth Grid data was task-based, and will only be updated on an As-Needed basis where necessary.Last Updated: 10/07/2019For additional information, contact the MDOT SHA Geospatial Technologies:Email: GIS@mdot.maryland.govFor information related to the data, visit the Eastern Shore Regional GIS Cooperative (ESRGC) websiteWebsite: https:www.esrgc.org/mapServices/For additional data, visit the MDOT GIS Open Data Portal:Website: https://data.imap.maryland.gov/pages/mdot/For additional information related to the Maryland Department of Transportation (MDOT):Website: https://www.mdot.maryland.gov/For additional information related to the Maryland Department of Transportation State Highway Administration (MDOT SHA):Website: https://www.roads.maryland.gov/Home.aspxMDOT SHA Geospatial Data Legal Disclaimer:The Maryland Department of Transportation State Highway Administration (MDOT SHA) makes no warranty, expressed or implied, as to the use or appropriateness of geospatial data, and there are no warranties of merchantability or fitness for a particular purpose or use. The information contained in geospatial data is from publicly available sources, but no representation is made as to the accuracy or completeness of geospatial data. MDOT SHA shall not be subject to liability for human error, error due to software conversion, defect, or failure of machines, or any material used in the connection with the machines, including tapes, disks, CD-ROMs or DVD-ROMs and energy. MDOT SHA shall not be liable for any lost profits, consequential damages, or claims against MDOT SHA by third parties.

  15. a

    Maryland Coastal Resiliency Assessment - Marsh Protection Potential Index

    • hub.arcgis.com
    • data.imap.maryland.gov
    • +2more
    Updated Mar 31, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2016). Maryland Coastal Resiliency Assessment - Marsh Protection Potential Index [Dataset]. https://hub.arcgis.com/datasets/f935066f460e4fff8d11a8aed0d2bb9e
    Explore at:
    Dataset updated
    Mar 31, 2016
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    The Marsh Protection Potential Index (MPPI) ranks Maryland’s coastal marshes by their ability to protect vulnerable communities from coastal hazards. To do so, we identified five key questions to assess each marsh: How much is the marsh able to reduce the impact of coastal hazards?Is the marsh located where coastal hazards are a threat?Is the marsh located where there are people to protect? Is the marsh located adjacent to other protective habitats?Is the marsh likely to survive in the face of rising sea levels?Using data from the Coastal Resiliency Assessment and other sources, we developed metrics to score each marsh on these five questions. Then, the sub-scores were combined to create the Marsh Protection Potential Index overall rating, which ranks the protective ability of over 14,000 marshes statewide.It is important to note that the MPPI ranks marshes relative to other marshes, rather than providing an absolute measure of protective services. The Marsh Protection Potential Index does not attempt to describe the dollar-value of protective services provided by each marsh, nor does it compare marshes to other types of habitat or to other protection infrastructure solutions. In addition, the MPPI does not assess marshes on any of the other characteristics that often inform conservation priorities. Things like biodiversity, ecosystem health, rare species, recreation value, or water quality services are often important to stakeholders, and these are not captured by the MPPI. The MPPI is intended to supplement, not replace, the other ways conservation decision-makers prioritize natural habitats. The Department of Natural Resources makes no warranty, expressed or implied, as to the use or appropriateness of Spatial Data, and there are no warranties of merchantability or fitness for a particular purpose or use. The information contained in Spatial Data is from publicly available sources, but no representation is made as to the accuracy or completeness of Spatial Data. The Department of Natural Resources shall not be subject to liability for human error, error due to software conversion, defect, or failure of machines, or any material used in the connection with the machines, including tapes, disks, CD-ROMs or DVD-ROMs and energy. The Department of Natural Resources shall not be liable for any lost profits, consequential damages, or claims against the Department of Natural Resources by third parties. The liability of the Department of Natural Resources for damage regardless of the form of the action shall not exceed any distribution fees that may have been paid in obtaining Spatial Data.This dataset was produced under award number NA13NOS4190136 from the Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration (NOAA) through the Maryland Department of Natural Resources Chesapeake and Coastal Services (CCS). The statements, finding and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce. CCS and The Nature Conservancy (TNC) contributed to the production of this dataset.This is a MD iMAP hosted service. Find more information on https://imap.maryland.gov.Feature Service Link: https://mdgeodata.md.gov/imap/rest/services/Environment/MD_CoastalResiliencyAssessment/FeatureServer/3

  16. GOES Infrared Satellite Imagery (NOAA)

    • disaster-amerigeoss.opendata.arcgis.com
    Updated Jul 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2022). GOES Infrared Satellite Imagery (NOAA) [Dataset]. https://disaster-amerigeoss.opendata.arcgis.com/items/5066b1ccadfd496a9c4cf803d5a425f2
    Explore at:
    Dataset updated
    Jul 1, 2022
    Dataset provided by
    NASAhttp://nasa.gov/
    Authors
    NASA ArcGIS Online
    Area covered
    Description

    Metadata: NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b RadiancesMore information about this imagery can be found here.This satellite imagery combines data from the NOAA GOES East and West satellites and the JMA Himawari satellite, providing full coverage of weather events for most of the world, from the west coast of Africa west to the east coast of India. The tile service updates to the most recent image every 10 minutes at 1.5 km per pixel resolution.The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.The Advanced Baseline Imager (ABI) instrument samples the radiance of the Earth in sixteen spectral bands using several arrays of detectors in the instrument’s focal plane. Single reflective band ABI Level 1b Radiance Products (channels 1 - 6 with approximate center wavelengths 0.47, 0.64, 0.865, 1.378, 1.61, 2.25 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for visible and near-infrared (IR) bands. Single emissive band ABI L1b Radiance Products (channels 7 - 16 with approximate center wavelengths 3.9, 6.185, 6.95, 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for IR bands. Detector samples are compressed, packetized and down-linked to the ground station as Level 0 data for conversion to calibrated, geo-located pixels (Level 1b Radiance data). The detector samples are decompressed, radiometrically corrected, navigated and resampled onto an invariant output grid, referred to as the ABI fixed grid.Data source and merge technique provided by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin- Madison.

  17. Spatial Prioritisation of Abatement of Carbon Emissions from Land Use 2023...

    • naturalengland-defra.opendata.arcgis.com
    Updated Jul 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Defra group ArcGIS Online organisation (2022). Spatial Prioritisation of Abatement of Carbon Emissions from Land Use 2023 (England) [Dataset]. https://naturalengland-defra.opendata.arcgis.com/datasets/spatial-prioritisation-of-abatement-of-carbon-emissions-from-land-use-2023-england
    Explore at:
    Dataset updated
    Jul 25, 2022
    Dataset provided by
    Defra - Department for Environment Food and Rural Affairshttp://defra.gov.uk/
    Authors
    Defra group ArcGIS Online organisation
    Area covered
    Description

    This layer will help you identify some of the strategic opportunities in your area for positive change and work out plans with land managers to enhance carbon, whatever the current land use. Carbon abatement is the reduction in carbon dioxide presently being released to the atmosphere from the environment when land use and management are in conflict with the best carbon outcome. This layer compliments the carbon sequestration map and shows where different types of actions can be taken to maximise carbon storage and sequestration. The approach here has been to highlight the worst areas of the country for carbon loss and abatement potential. Where existing high quality semi natural habitat already exists there is likely to be opportunities to enhance carbon, but much of this is fine scale management decisions that a national data set cannot determine. So, a more precautionary approach has been applied that if a habitat presently exists on a site, land-use change has not been recommended. There will be places where an existing habitat could be enhanced or changed to another habitat to give carbon benefits. Many habitats have become degraded through management practices over time, such as drainage, which means it now sits in a lower carbon state & is losing carbon and as such has abatement potential such as conversion from a dry grassland habitat with drainage to much wetter fenland habitat. In the worse cases some habitats in our current priority habitat classification system are degraded versions of other habitats and have the potential to move between habitats and so abating carbon. This layer has made a broad assessment of which land use may be changed to an appropriate higher carbon variant. In the case of very productive grassland and pasture we have assumed only a change to high carbon management practices where clear abatement gains are present. This is because high value agricultural land is a key non-renewable resource which is needed for food security. In addition, such land generates a good economic revenue for agricultural goods. Full metadata can be viewed on data.gov.uk

  18. Land Cover 2050 - Global

    • giscommons-countyplanning.opendata.arcgis.com
    • cacgeoportal.com
    • +11more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  19. USA Protected Areas - GAP Status Code

    • hub.arcgis.com
    • resilience.climate.gov
    Updated Nov 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Protected Areas - GAP Status Code [Dataset]. https://hub.arcgis.com/maps/e430be119ee44e39a18cd1995ac5b261
    Explore at:
    Dataset updated
    Nov 26, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations. GAP Status Code is a measure of management intent to permanently protect biodiversity. GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. This map displays locations from the PAD-US version 3.0 symbolized by Gap Status Code. Status code values indicate the level of protection from GAP status 1 with a high level of protection to GAP status 4 with no known mandate for protection:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionThis map features 3 layers derived from the Protection Status by GAP Status Code feature layer. Four layers were used in order to control the drawing order of overlapping protected areas. A vector tile layer is used to draw the map at scales smaller than 1:1,000,000.PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2019). Overwrite Hosted Feature Services, v2.1.4 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/d45f80eb53c748e7aa3d938a46b48836
Organization logo

Overwrite Hosted Feature Services, v2.1.4

Explore at:
Dataset updated
Apr 16, 2019
Dataset authored and provided by
Esrihttp://esri.com/
Description

Want to keep the data in your Hosted Feature Service current? Not interested in writing a lot of code?Leverage this Python Script from the command line, Windows Scheduled Task, or from within your own code to automate the replacement of data in an existing Hosted Feature Service. It can also be leveraged by your Notebook environment and automatically managed by the MNCD Tool!See the Sampler Notebook that features the OverwriteFS tool run from Online to update a Feature Service. It leverages MNCD to cache the OverwriteFS script for import to the Notebook. A great way to jump start your Feature Service update workflow! RequirementsPython v3.xArcGIS Python APIStored Connection Profile, defined by Python API 'GIS' module. Also accepts 'pro', to specify using the active ArcGIS Pro connection. Will require ArcGIS Pro and Arcpy!Pre-Existing Hosted Feature ServiceCapabilitiesOverwrite a Feature Service, refreshing the Service Item and DataBackup and reapply Service, Layer, and Item properties - New at v2.0.0Manage Service to Service or Service to Data relationships - New at v2.0.0Repair Lost Service File Item to Service Relationships, re-enabling Service Overwrite - New at v2.0.0'Swap Layer' capability for Views, allowing two Services to support a View, acting as Active and Idle role during Updates - New at v2.0.0Data Conversion capability, able to invoke following a download and before Service update - New at v2.0.0Includes 'Rss2Json' Conversion routine, able to read a RSS or GeoRSS source and generate GeoJson for Service Update - New at v2.0.0Renamed 'Rss2Json' to 'Xml2GeoJSON' for its enhanced capabilities, 'Rss2Json' remains for compatability - Revised at v2.1.0Added 'Json2GeoJSON' Conversion routine, able to read and manipulate Json or GeoJSON data for Service Updates - New at v2.1.0Can update other File item types like PDF, Word, Excel, and so on - New at v2.1.0Supports ArcGIS Python API v2.0 - New at v2.1.2RevisionsSep 29, 2021: Long awaited update to v2.0.0!Sep 30, 2021: v2.0.1, Patch to correct Outcome Status when download or Coversion resulted in no change. Also updated documentation.Oct 7, 2021: v2.0.2, workflow Patch correcting Extent update of Views when Overwriting Service, discovered following recent ArcGIS Online update. Enhancements to 'datetimeUtil' Support script.Nov 30, 2021: v2.1.0, added new 'Json2GeoJSON' Converter, enhanced 'Xml2GeoJSON' Converter, retired 'Rss2Json' Converter, added new Option Switches 'IgnoreAge' and 'UpdateTarget' for source age control and QA/QC workflows, revised Optimization logic and CRC comparison on downloads.Dec 1, 2021: v2.1.1, Only a patch to Conversion routines: Corrected handling of null Z-values in Geometries (discovered immediately following release 2.1.0), improve error trapping while processing rows, and added deprecation message to retired 'Rss2Json' conversion routine.Feb 22, 2022: v2.1.2, Patch to detect and re-apply case-insensitive field indexes. Update to allow Swapping Layers to Service without an associated file item. Added cache refresh following updates. Patch to support Python API 2.0 service 'table' property. Patches to 'Json2GeoJSON' and 'Xml2GeoJSON' converter routines.Sep 5, 2024: v2.1.4, Patch service manager refresh failure issue. Added trace report to Convert execution on exception. Set 'ignore-DataItemCheck' property to True when 'GetTarget' action initiated. Hardened Async job status check. Update 'overwriteFeatureService' to support GeoPackage type and file item type when item.name includes a period, updated retry loop to try one final overwrite after del, fixed error stop issue on failed overwrite attempts. Removed restriction on uploading files larger than 2GB. Restores missing 'itemInfo' file on service File items. Corrected false swap success when view has no layers. Lifted restriction of Overwrite/Swap Layers for OGC. Added 'serviceDescription' to service detail backup. Added 'thumbnail' to item backup/restore logic. Added 'byLayerOrder' parameter to 'swapFeatureViewLayers'. Added 'SwapByOrder' action switch. Patch added to overwriteFeatureService 'status' check. Patch for June 2024 update made to 'managers.overwrite' API script that blocks uploads > 25MB, API v2.3.0.3. Patch 'overwriteFeatureService' to correctly identify overwrite file if service has multiple Service2Data relationships.Includes documentation updates!

Search
Clear search
Close search
Google apps
Main menu