The data we used for this study include species occurrence data (n=15 species), climate data and predictions, an expert opinion questionnaire, and species masks that represented the model domain for each species. For this data release, we include the results of the expert opinion questionnaire and the species model domains (or masks). We developed an expert opinion questionnaire to gather information regarding expert opinion regarding the importance of climate variables in determining a species geographic range. The species masks, or model domains, were defined separately for each species using a variation of the “target-group” approach (Phillips et al. 2009), where the domain was determine using convex polygons including occurrence data for at least three phylogenetically related and similar species (Watling et al. 2012). The species occurrence data, climate data, and climate predictions are freely available online, and therefore not included in this data release. The species occurrence data were obtained primarily from the online database Global Biodiversity Information Facility (GBIF; http://www.gbif.org/), and from scientific literature (Watling et al. 2011). Climate data were obtained from the WorldClim database (Hijmans et al. 2005) and climate predictions were obtained from the Center for Ocean-Atmosphere Prediction Studies (COAPS) at Florida State University (https://floridaclimateinstitute.org/resources/data-sets/regional-downscaling). See metadata for references.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data and Matlab code can be found that support the findings of the master's thesis "Evaluation of the handling of a variable dynamics tilting tricycle".
The objective of the experimental study is to find the configuration of the tilt mechanism of the Dressel tilting tricycle with the optimal handling performance. The matlab code is used to calculate the handling performance from raw data, obtained by gyroscopes. A slalom manoeuvre and a low-speed line following manoeuvre have been performed and the code supplies the processing methods of the data. The results of the repeated trials can be found in the datasets. Also the velocity of the different vehicles can be found in the datasets. Another matlab file is present that was used to optimize the dimensions of the tilt mechanism for a larger tilt limit with a simplified model of the tricycle.
This dataset contains tabular files with information about the usage preferences of speakers of Maltese English with regard to 63 pairs of lexical expressions. These pairs (e.g. truck-lorry or realization-realisation) are known to differ in usage between BrE and AmE (cf. Algeo 2006). The data were elicited with a questionnaire that asks informants to indicate whether they always use one of the two variants, prefer one over the other, have no preference, or do not use either expression (see Krug and Sell 2013 for methodological details). Usage preferences were therefore measured on a symmetric 5-point ordinal scale. Data were collected between 2008 to 2018, as part of a larger research project on lexical and grammatical variation in settings where English is spoken as a native, second, or foreign language. The current dataset, which we use for our methodological study on ordinal data modeling strategies, consists of a subset of 500 speakers that is roughly balanced on year of birth. Abstract: Related publication In empirical work, ordinal variables are typically analyzed using means based on numeric scores assigned to categories. While this strategy has met with justified criticism in the methodological literature, it also generates simple and informative data summaries, a standard often not met by statistically more adequate procedures. Motivated by a survey of how ordered variables are dealt with in language research, we draw attention to an un(der)used latent-variable approach to ordinal data modeling, which constitutes an alternative perspective on the most widely used form of ordered regression, the cumulative model. Since the latent-variable approach does not feature in any of the studies in our survey, we believe it is worthwhile to promote its benefits. To this end, we draw on questionnaire-based preference ratings by speakers of Maltese English, who indicated on a 5-point scale which of two synonymous expressions (e.g. package-parcel) they (tend to) use. We demonstrate that a latent-variable formulation of the cumulative model affords nuanced and interpretable data summaries that can be visualized effectively, while at the same time avoiding limitations inherent in mean response models (e.g. distortions induced by floor and ceiling effects). The online supplementary materials include a tutorial for its implementation in R.
This layer shows median earnings by occupational group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Only full-time year-round workers included. Median earnings is based on earnings in past 12 months of survey. Occupation Groups based on Bureau of Labor Statistics (BLS)' Standard Occupation Classification (SOC). This layer is symbolized to show median earnings of the full-time, year-round civilian employed population. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B24021Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This repository contains data from a study to investigate possible effects of vection on postural control. The data contain two variables (anterior-posterior displacement and total length of trajectory) describing posture, and three variables (rating, latency and duration) describing vection. The experiment used three visual field conditions and five amplitude conditions; posture and vection variables are available for each condition. See Horiuchi et al. (2021) for details.
The data set comprises posture and vection data collected from 19 participants using a Wii fit board and Wii remote. The variables presented in the data set have been calculated from the raw data (see technical document for information). The experiment used 15 experimental conditions, and the variables are presented for each participant in each condition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThere is a need to develop harmonized procedures and a Minimum Data Set (MDS) for cross-border Multi Casualty Incidents (MCI) in medical emergency scenarios to ensure appropriate management of such incidents, regardless of place, language and internal processes of the institutions involved. That information should be capable of real-time communication to the command-and-control chain. It is crucial that the models adopted are interoperable between countries so that the rights of patients to cross-border healthcare are fully respected.ObjectiveTo optimize management of cross-border Multi Casualty Incidents through a Minimum Data Set collected and communicated in real time to the chain of command and control for each incident. To determine the degree of agreement among experts.MethodWe used the modified Delphi method supplemented with the Utstein technique to reach consensus among experts. In the first phase, the minimum requirements of the project, the profile of the experts who were to participate, the basic requirements of each variable chosen and the way of collecting the data were defined by providing bibliography on the subject. In the second phase, the preliminary variables were grouped into 6 clusters, the objectives, the characteristics of the variables and the logistics of the work were approved. Several meetings were held to reach a consensus to choose the MDS variables using a Modified Delphi technique. Each expert had to score each variable from 1 to 10. Non-voting variables were eliminated, and the round of voting ended. In the third phase, the Utstein Style was applied to discuss each group of variables and choose the ones with the highest consensus. After several rounds of discussion, it was agreed to eliminate the variables with a score of less than 5 points. In phase four, the researchers submitted the variables to the external experts for final assessment and validation before their use in the simulations. Data were analysed with SPSS Statistics (IBM, version 2) software.ResultsSix data entities with 31 sub-entities were defined, generating 127 items representing the final MDS regarded as essential for incident management. The level of consensus for the choice of items was very high and was highest for the category ‘Incident’ with an overall kappa of 0.7401 (95% CI 0.1265–0.5812, p 0.000), a good level of consensus in the Landis and Koch model. The items with the greatest degree of consensus at ten were those relating to location, type of incident, date, time and identification of the incident. All items met the criteria set, such as digital collection and real-time transmission to the chain of command and control.ConclusionsThis study documents the development of a MDS through consensus with a high degree of agreement among a group of experts of different nationalities working in different fields. All items in the MDS were digitally collected and forwarded in real time to the chain of command and control. This tool has demonstrated its validity in four large cross-border simulations involving more than eight countries and their emergency services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Random variables used in analyses of the NI dataset- *.env: individual random variable files used in BayeScEnv- all_arbitraryNI.csv: same random variables used in BayeScEnv, but in the format to be used in RDA.
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This report describes support for a new type of variable-width line in the 'vwline' package for R that is based on Bezier curves. There is also a new function for specifying the width of a variable-width line based on Bezier curves and there is a new linejoin and lineend style, called "extend", that is available when both the line and the width of the line are based on Bezier curves. This report also introduces a small 'gridBezier' package for drawing Bezier curves in R.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Israel Exports of electric capacitors, fixed, variable or adjustable (preset) to Spain was US$184 Thousand during 2024, according to the United Nations COMTRADE database on international trade. Israel Exports of electric capacitors, fixed, variable or adjustable (preset) to Spain - data, historical chart and statistics - was last updated on March of 2025.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains simulated datasets, empirical data, and R scripts described in the paper: "Li, Q. and Kou, X. (2021) WiBB: An integrated method for quantifying the relative importance of predictive variables. Ecography (DOI: 10.1111/ecog.05651)".
A fundamental goal of scientific research is to identify the underlying variables that govern crucial processes of a system. Here we proposed a new index, WiBB, which integrates the merits of several existing methods: a model-weighting method from information theory (Wi), a standardized regression coefficient method measured by ß* (B), and bootstrap resampling technique (B). We applied the WiBB in simulated datasets with known correlation structures, for both linear models (LM) and generalized linear models (GLM), to evaluate its performance. We also applied two other methods, relative sum of wight (SWi), and standardized beta (ß*), to evaluate their performance in comparison with the WiBB method on ranking predictor importances under various scenarios. We also applied it to an empirical dataset in a plant genus Mimulus to select bioclimatic predictors of species' presence across the landscape. Results in the simulated datasets showed that the WiBB method outperformed the ß* and SWi methods in scenarios with small and large sample sizes, respectively, and that the bootstrap resampling technique significantly improved the discriminant ability. When testing WiBB in the empirical dataset with GLM, it sensibly identified four important predictors with high credibility out of six candidates in modeling geographical distributions of 71 Mimulus species. This integrated index has great advantages in evaluating predictor importance and hence reducing the dimensionality of data, without losing interpretive power. The simplicity of calculation of the new metric over more sophisticated statistical procedures, makes it a handy method in the statistical toolbox.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Niger Imports from Japan of Electric capacitors, fixed, variable or adjustable (preset) was US$2.08 Thousand during 2016, according to the United Nations COMTRADE database on international trade. Niger Imports from Japan of Electric capacitors, fixed, variable or adjustable (preset) - data, historical chart and statistics - was last updated on March of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aruba Imports from Panama of Electric capacitors, fixed, variable or adjustable (preset) was US$0 during 2022, according to the United Nations COMTRADE database on international trade. Aruba Imports from Panama of Electric capacitors, fixed, variable or adjustable (preset) - data, historical chart and statistics - was last updated on March of 2025.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
With the recent additions of gender identity and gender expression to the Canadian Human Rights Act and the Criminal Code as well as some sources of administrative data changing from sex to gender, it is necessary to distinguish the concepts of sex and gender within the National Statistical System. In response, Statistics Canada has released a revised variable, 'sex of person', a new variable, 'gender of person' and their related classifications.
This data release contains the input-data files and R scripts associated with the analysis presented in [citation of manuscript]. The spatial extent of the data is the contiguous U.S. The input-data files include one comma separated value (csv) file of county-level data, and one csv file of city-level data. The county-level csv (“county_data.csv”) contains data for 3,109 counties. This data includes two measures of water use, descriptive information about each county, three grouping variables (climate region, urban class, and economic dependency), and contains 18 explanatory variables: proportion of population growth from 2000-2010, fraction of withdrawals from surface water, average daily water yield, mean annual maximum temperature from 1970-2010, 2005-2010 maximum temperature departure from the 40-year maximum, mean annual precipitation from 1970-2010, 2005-2010 mean precipitation departure from the 40-year mean, Gini income disparity index, percent of county population with at least some college education, Cook Partisan Voting Index, housing density, median household income, average number of people per household, median age of structures, percent of renters, percent of single family homes, percent apartments, and a numeric version of urban class. The city-level csv (city_data.csv) contains data for 83 cities. This data includes descriptive information for each city, water-use measures, one grouping variable (climate region), and 6 explanatory variables: type of water bill (increasing block rate, decreasing block rate, or uniform), average price of water bill, number of requirement-oriented water conservation policies, number of rebate-oriented water conservation policies, aridity index, and regional price parity. The R scripts construct fixed-effects and Bayesian Hierarchical regression models. The primary difference between these models relates to how they handle possible clustering in the observations that define unique water-use settings. Fixed-effects models address possible clustering in one of two ways. In a "fully pooled" fixed-effects model, any clustering by group is ignored, and a single, fixed estimate of the coefficient for each covariate is developed using all of the observations. Conversely, in an unpooled fixed-effects model, separate coefficient estimates are developed only using the observations in each group. A hierarchical model provides a compromise between these two extremes. Hierarchical models extend single-level regression to data with a nested structure, whereby the model parameters vary at different levels in the model, including a lower level that describes the actual data and an upper level that influences the values taken by parameters in the lower level. The county-level models were compared using the Watanabe-Akaike information criterion (WAIC) which is derived from the log pointwise predictive density of the models and can be shown to approximate out-of-sample predictive performance. All script files are intended to be used with R statistical software (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org) and Stan probabilistic modeling software (Stan Development Team. 2017. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper explores a unique dataset of all the SET ratings provided by students of one university in Poland at the end of the winter semester of the 2020/2021 academic year. The SET questionnaire used by this university is presented in Appendix 1. The dataset is unique for several reasons. It covers all SET surveys filled by students in all fields and levels of study offered by the university. In the period analysed, the university was entirely in the online regime amid the Covid-19 pandemic. While the expected learning outcomes formally have not been changed, the online mode of study could have affected the grading policy and could have implications for some of the studied SET biases. This Covid-19 effect is captured by econometric models and discussed in the paper. The average SET scores were matched with the characteristics of the teacher for degree, seniority, gender, and SET scores in the past six semesters; the course characteristics for time of day, day of the week, course type, course breadth, class duration, and class size; the attributes of the SET survey responses as the percentage of students providing SET feedback; and the grades of the course for the mean, standard deviation, and percentage failed. Data on course grades are also available for the previous six semesters. This rich dataset allows many of the biases reported in the literature to be tested for and new hypotheses to be formulated, as presented in the introduction section. The unit of observation or the single row in the data set is identified by three parameters: teacher unique id (j), course unique id (k) and the question number in the SET questionnaire (n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9} ). It means that for each pair (j,k), we have nine rows, one for each SET survey question, or sometimes less when students did not answer one of the SET questions at all. For example, the dependent variable SET_score_avg(j,k,n) for the triplet (j=Calculus, k=John Smith, n=2) is calculated as the average of all Likert-scale answers to question nr 2 in the SET survey distributed to all students that took the Calculus course taught by John Smith. The data set has 8,015 such observations or rows. The full list of variables or columns in the data set included in the analysis is presented in the attached filesection. Their description refers to the triplet (teacher id = j, course id = k, question number = n). When the last value of the triplet (n) is dropped, it means that the variable takes the same values for all n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9}.Two attachments:- word file with variables description- Rdata file with the data set (for R language).Appendix 1. Appendix 1. The SET questionnaire was used for this paper. Evaluation survey of the teaching staff of [university name] Please, complete the following evaluation form, which aims to assess the lecturer’s performance. Only one answer should be indicated for each question. The answers are coded in the following way: 5- I strongly agree; 4- I agree; 3- Neutral; 2- I don’t agree; 1- I strongly don’t agree. Questions 1 2 3 4 5 I learnt a lot during the course. ○ ○ ○ ○ ○ I think that the knowledge acquired during the course is very useful. ○ ○ ○ ○ ○ The professor used activities to make the class more engaging. ○ ○ ○ ○ ○ If it was possible, I would enroll for the course conducted by this lecturer again. ○ ○ ○ ○ ○ The classes started on time. ○ ○ ○ ○ ○ The lecturer always used time efficiently. ○ ○ ○ ○ ○ The lecturer delivered the class content in an understandable and efficient way. ○ ○ ○ ○ ○ The lecturer was available when we had doubts. ○ ○ ○ ○ ○ The lecturer treated all students equally regardless of their race, background and ethnicity. ○ ○
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows children by age group by parents' labor force participation. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.This layer is symbolized to show the percent of children with no available (residential) parent in the labor force. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B23008 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 11, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset comprises monthly mean data from a global, transient simulation with the Whole Atmosphere Community Climate Model eXtension (WACCM-X) from 2015 to 2070. WACCM-X is a global atmosphere model covering altitudes from the surface up to ~500 km, i.e., including the troposphere, stratosphere, mesosphere and thermosphere. WACCM-X version 2.0 (Liu et al., 2018) was used, part of the Community Earth System Model (CESM) release 2.1.0 (http://www.cesm.ucar.edu/models/cesm2) made available by the National Center for Atmospheric Research. The model was run in free-running mode with a horizontal resolution of 1.9 degrees latitude and 2.5 degrees longitude (giving 96 latitude points and 144 longitude points) and 126 vertical levels. Further description of the model and simulation setup is provided by Cnossen (2022) and references therein. A large number of variables is included on standard monthly mean output files on the model grid, while selected variables are also offered interpolated to a constant height grid or vertically integrated in height (details below). Zonal mean and global mean output files are included as well.
The data are provided in NetCDF format and file names have the following structure:
f.e210.FXHIST.f19_f19.h1a.cam.h0.[YYYY]-[MM][DFT].nc
where [YYYY] gives the year with 4 digits, [MM] gives the month (2 digits) and [DFT] specifies the data file type. The following data file types are included:
1) Monthly mean output on the full grid for the full set of variables; [DFT] =
2) Zonal mean monthly mean output for the full set of variables; [DFT] = _zm
3) Global mean monthly mean output for the full set of variables; [DFT] = _gm
4) Height-interpolated/-integrated output on the full grid for selected variables; [DFT] = _ht
A cos(latitude) weighting was used when calculating the global means.
Data were interpolated to a set of constant heights (61 levels in total) using the Z3GM variable (for variables output on midpoints, with 'lev' as the vertical coordinate) or the Z3GMI variable (for variables output on interfaces, with ilev as the vertical coordinate) stored on the original output files (type 1 above). Interpolation was done separately for each longitude, latitude and time.
Mass density (DEN [g/cm3]) was calculated from the M_dens, N2_vmr, O2, and O variables on the original data files before interpolation to constant height levels.
The Joule heating power QJ [W/m3] was calculated using Q_J = (sigma_P*B^2)*((u_i - U_n)^2 + (v_i-v_n)^2 + (w_i-w_n)^2) with sigma_P = Pedersen conductivity[S], B = geomagnetic field strength [T], ui, vi, and wi = zonal, meridional, and vertical ion velocities [m/s] and un, vn, and wn = neutral wind velocities [m/s]. QJ was integrated vertically in height (using a 2.5 km height grid spacing rather than the 61 levels on output file type 4) to give the JHH variable on the type 4 data files. The QJOULE variable also given is the Joule heating rate [K/s] at each of the 61 height levels.
All data are provided as monthly mean files with one time record per file, giving 672 files for each data file type for the period 2015-2070 (56 years).
References:
Cnossen, I. (2022), A realistic projection of climate change in the upper atmosphere into the 21st century, in preparation.
Liu, H.-L., C.G. Bardeen, B.T. Foster, et al. (2018), Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0), Journal of Advances in Modeling Earth Systems, 10(2), 381-402, doi:10.1002/2017ms001232.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Principal variables analysis (PVA) is a technique for selecting a subset of variables that capture as much of the information in a dataset as possible. Existing approaches for PVA are based on the Pearson correlation matrix, which is not well-suited to describing the relationships between non-Gaussian variables. We propose a generalized approach to PVA enabling the use of different types of correlation, and we explore using Spearman, Gaussian copula, and polychoric correlations as alternatives to Pearson correlation. We compare performance in simulation studies varying the form of the true multivariate distribution over a range of possibilities. Our results show that on continuous non-Gaussian data, using generalized PVA with Gaussian copula or Spearman correlations provides a major improvement in performance compared to Pearson. On ordinal data, generalized PVA with polychoric correlations outperforms the rest by a wide margin. We apply generalized PVA to a dataset of 102 clinical variables measured on individuals with X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder involving symptoms of both dystonia and parkinsonism. We find that using different types of correlation yields substantively different sets of principal variables; for example, parkinsonism-related metrics appear more explanatory than dystonia-related metrics on the observed data. Supplementary materials for this article are available online.
This layer shows vacant housing by type (for rent/sale, vacation home, etc.). This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.This layer is symbolized to show the percent of housing units that are vacant. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B25004, B25002, B25003 (Not all lines of ACS tables B25002 and B25003 are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The data we used for this study include species occurrence data (n=15 species), climate data and predictions, an expert opinion questionnaire, and species masks that represented the model domain for each species. For this data release, we include the results of the expert opinion questionnaire and the species model domains (or masks). We developed an expert opinion questionnaire to gather information regarding expert opinion regarding the importance of climate variables in determining a species geographic range. The species masks, or model domains, were defined separately for each species using a variation of the “target-group” approach (Phillips et al. 2009), where the domain was determine using convex polygons including occurrence data for at least three phylogenetically related and similar species (Watling et al. 2012). The species occurrence data, climate data, and climate predictions are freely available online, and therefore not included in this data release. The species occurrence data were obtained primarily from the online database Global Biodiversity Information Facility (GBIF; http://www.gbif.org/), and from scientific literature (Watling et al. 2011). Climate data were obtained from the WorldClim database (Hijmans et al. 2005) and climate predictions were obtained from the Center for Ocean-Atmosphere Prediction Studies (COAPS) at Florida State University (https://floridaclimateinstitute.org/resources/data-sets/regional-downscaling). See metadata for references.