99 datasets found
  1. g

    EVGmap 50 VMAP2-Compliant GIS Vector Data

    • shop.geospatial.com
    Updated Feb 7, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). EVGmap 50 VMAP2-Compliant GIS Vector Data [Dataset]. https://shop.geospatial.com/publication/92DCQJ687W1J4RP1F85QANBYR1/EVGmap-50-VMAP2-Compliant-GIS-Vector-Data
    Explore at:
    Dataset updated
    Feb 7, 2015
    Description

    Spatial coverage index compiled by East View Geospatial of set "EVGmap 50 VMAP2-Compliant GIS Vector Data". Source data from EVG (publisher). Type: Topographic. Scale: 1:50,000. Region: World.

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. g

    Iran 1:100,000 Scale Geological GIS Vector Data

    • shop.geospatial.com
    Updated Nov 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Iran 1:100,000 Scale Geological GIS Vector Data [Dataset]. https://shop.geospatial.com/publication/WHJAPG52TB2ZMDJ6C762EVYGG7/Iran-1-to-100000-Scale-Geological-GIS-Vector-Data
    Explore at:
    Dataset updated
    Nov 23, 2020
    Area covered
    Iran
    Description

    Spatial coverage index compiled by East View Geospatial of set "Iran 1:100,000 Scale Geological GIS Vector Data". Source data from GSI (publisher). Type: Geoscientific - Geology. Scale: 1:100,000. Region: Middle East.

  4. g

    EVGmap 250 VMAP1-Compliant GIS Vector Data

    • shop.geospatial.com
    Updated May 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). EVGmap 250 VMAP1-Compliant GIS Vector Data [Dataset]. https://shop.geospatial.com/publication/VCFP6Y5F885ZM02CWV5EGEK623/EVGmap-250-VMAP1-Compliant-GIS-Vector-Data
    Explore at:
    Dataset updated
    May 9, 2019
    Description

    Spatial coverage index compiled by East View Geospatial of set "EVGmap 250 VMAP1-Compliant GIS Vector Data". Source data from EVG (publisher). Type: Topographic. Scale: 1:250,000. Region: World.

  5. E

    Data from: Working with map data in GIS

    • find.data.gov.scot
    • dtechtive.com
    xml, zip
    Updated Feb 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EDINA (2017). Working with map data in GIS [Dataset]. http://doi.org/10.7488/ds/1954
    Explore at:
    xml(0.0035 MB), zip(86.37 MB)Available download formats
    Dataset updated
    Feb 22, 2017
    Dataset provided by
    EDINA
    Description

    Wind Farms - follows on from the 'Dave' Data Download case study. View and symbolise OS raster and height data and Wind Farm location data. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2014-04-10 and migrated to Edinburgh DataShare on 2017-02-22.

  6. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  7. e

    Natural Earth Vector (NE)

    • catalogue.eatlas.org.au
    • researchdata.edu.au
    Updated Nov 8, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Earth Data (2012). Natural Earth Vector (NE) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/e0647a27-74e3-464c-b3df-88337e9dc9ee
    Explore at:
    www:link-1.0-http--related, www:link-1.0-http--link, ogc:wms-1.1.1-http-get-map, www:link-1.0-http--downloaddataAvailable download formats
    Dataset updated
    Nov 8, 2012
    Dataset provided by
    Natural Earth Data
    Area covered
    Earth
    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

    Natural Earth was built through a collaboration of many volunteers and is supported by NACIS (North American Cartographic Information Society).

    Natural Earth Vector comes in ESRI shapefile format, the de facto standard for vector geodata. Character encoding is Windows-1252.

    Natural Earth Vector includes features corresponding to the following:

    Cultural Vector Data Thremes:

    • Countries: matched boundary lines and polygons with names attributes for countries and sovereign states. Includes dependencies (French Polynesia), map units (U.S. Pacific Island Territories) and sub-national map subunits (Corsica versus mainland Metropolitan France).
    • Disputed areas and breakaway regions - From Kashmir to the Elemi Triangle, Northern Cyprus to Western Sahara.
    • First order admin (provinces, departments, states, etc.): internal boundaries and polygons for all but a few tiny island nations. Includes names attributes and some statistical groupings of the same for smaller countries.
    • Populated places: point symbols with name attributes. Includes capitals, major cities and towns, plus significant smaller towns in sparsely inhabited regions. We favor regional significance over population census in determining rankings.
    • Urban polygons: derived from 2002-2003 MODIS satellite data.
    • Parks and protected areas: US National Park Service units.
    • Pacific nation groupings: boxes for keeping these far-flung islands tidy.
    • Water boundary indicators: partial selection of key 200-mile nautical limits, plus some disputed, treaty, and median lines.

    Physical Vector Data Themes:

    • Coastline: ocean coastline, including major islands. Coastline is matched to land and water polygons.
    • Land: Land polygons including major islands
    • Ocean: Ocean polygon split into contiguous pieces.
    • Minor Islands: additional small ocean islands ranked to two levels of relative importance.
    • Reefs: major coral reefs from WDB2.
    • Physical region features: polygon and point labels of major physical features.
    • Rivers and Lake Centerlines: ranked by relative importance. Includes name and line width attributes. Don’t want minor lakes? Turn on their centerlines to avoid unseemly data gaps.
    • Lakes: ranked by relative importance, coordinating with river ranking. Includes name attributes.
    • Glaciated areas: polygons derived from DCW, except for Antarctica derived from MOA. Includes name attributes for major polar glaciers.
    • Antarctic ice shelves: derived from 2003-2004 MOA. Reflects recent ice shelf collapses.
    • Bathymetry: nested polygons at 0, -200, -1,000, -2,000, -3,000, -4,000, -5,000, -6,000, -7,000, -8,000, -9,000,and -10,000 meters. Created from SRTM Plus.
    • Geographic lines: Polar circles, tropical circles, equator, and International Date Line.
    • Graticules: 1-, 5-, 10-, 15-, 20-, and 30-degree increments. Includes WGS84 bounding box.
  8. G

    Geospatial Data Provider Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Nov 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Provider Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-provider-492762
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Nov 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global geospatial data market is poised for significant expansion, projected to reach $3,788 million and grow at a Compound Annual Growth Rate (CAGR) of 6.1% during the forecast period of 2025-2033. This robust growth is propelled by an increasing demand for location-based intelligence across diverse industries. Key drivers include the proliferation of IoT devices generating vast amounts of location data, advancements in satellite imagery and remote sensing technologies, and the growing adoption of AI and machine learning for analyzing complex geospatial datasets. The enterprise sector is emerging as a dominant application segment, leveraging geospatial data for enhanced decision-making in areas such as logistics, urban planning, real estate, and natural resource management. Furthermore, government agencies are increasingly utilizing this data for public safety, infrastructure development, and environmental monitoring. The market is characterized by a bifurcated segmentation between vector data, representing discrete geographic features, and raster data, depicting continuous phenomena like elevation or temperature. Both segments are experiencing healthy growth, driven by specialized applications and analytical needs. Emerging trends include the rise of real-time geospatial data streams, the increasing importance of high-resolution imagery, and the integration of AI-powered analytics to extract deeper insights. However, challenges such as data privacy concerns, high infrastructure costs for data acquisition and processing, and the need for skilled professionals to interpret and utilize the data effectively may pose some restraints. Despite these hurdles, the overwhelming benefits of actionable location intelligence are expected to drive sustained market expansion, with North America and Europe currently leading in adoption, followed closely by the rapidly growing Asia Pacific region. This in-depth report delves into the dynamic and rapidly evolving Geospatial Data Provider market, offering a comprehensive analysis from the historical period of 2019-2024 through to a robust forecast extending to 2033. With the Base Year and Estimated Year set at 2025, the report provides an up-to-the-minute snapshot and a forward-looking perspective on this critical industry. The market size, valued in the millions, is meticulously dissected across various segments, companies, and industry developments.

  9. D

    Atolls of France: geospatial vector data (MCRMP project)

    • dataverse.ird.fr
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serge Andréfouët; Serge Andréfouët (2023). Atolls of France: geospatial vector data (MCRMP project) [Dataset]. http://doi.org/10.23708/LHTEVZ
    Explore at:
    application/zipped-shapefile(314981), application/zipped-shapefile(319150), application/zipped-shapefile(16957), application/zipped-shapefile(34377), application/zipped-shapefile(145542), application/zipped-shapefile(12969324), application/zipped-shapefile(1049821), application/zipped-shapefile(2979211), txt(1819)Available download formats
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    DataSuds
    Authors
    Serge Andréfouët; Serge Andréfouët
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZ

    Area covered
    France, Wallis and Futuna, French Polynesia, New Caledonia
    Dataset funded by
    NASA (2001-2007)
    IRD (2003-present)
    Description

    The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 102 atolls of France (in the Pacific and Indian Oceans) as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).

  10. e

    GIS vector data for sample locations and plots associated with the Hillslope...

    • portal.edirepository.org
    • search.dataone.org
    kml, zip
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrence Band (2016). GIS vector data for sample locations and plots associated with the Hillslope Study in Macon County, NC [Dataset]. http://doi.org/10.6073/pasta/7229e742973a9da49e27fa43fd21f977
    Explore at:
    zip(not specified kb), kmlAvailable download formats
    Dataset updated
    2016
    Dataset provided by
    EDI
    Authors
    Lawrence Band
    Time period covered
    Nov 14, 2013 - Sep 20, 2016
    Description

    The Hillslope Study sites represent a gradient of landscapes, including forested, valley agriculture, and mountain housing developments. These locations and plots were used to collect samples of various matrices for numerous analyses at differing intervals. The data set consists of Open Office spreadsheet and other files that document all the Hillslope Study locations.

  11. Geospatial data for the Vegetation Mapping Inventory Project of Indiana...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Indiana Dunes National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-indiana-dunes-national-lak
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Indiana
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  12. d

    Data from: A GIS compilation of vector shorelines for the Virginia coastal...

    • catalog.data.gov
    • datasets.ai
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s [Dataset]. https://catalog.data.gov/dataset/a-gis-compilation-of-vector-shorelines-for-the-virginia-coastal-region-from-the-1840s-to-2
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017. These data provide a standardized shoreline database for the state. This release includes both long-term (up to 168 years) and short term (~20 years) rates. Files associated with the long-term and short-term rates are appended with "LT" and "ST", respectively. A proxy-datum bias reference line that accounts for the positional difference in a proxy shoreline (e.g. High Water Line (HWL) shoreline) and a datum shoreline (e.g. MHW shoreline) is also included in this release.

  13. n

    China Dimensions Data Collection: Fundamental GIS: Digital Chart of China,...

    • earthdata.nasa.gov
    • data.nasa.gov
    • +2more
    Updated Sep 30, 1996
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (1996). China Dimensions Data Collection: Fundamental GIS: Digital Chart of China, 1:1M, Version 1 [Dataset]. http://doi.org/10.7927/H4QC01D2
    Explore at:
    Dataset updated
    Sep 30, 1996
    Dataset authored and provided by
    ESDIS
    Area covered
    China
    Description

    The Fundamental GIS: Digital Chart of China, 1:1M, Version 1 consists of vector maps of China and surrounding areas. The maps include roads, railroads, drainage systems, contours, populated places, and urbanized areas for China proper, as well as for China and neighboring countries. The maps are at a scale of one to one million (1:1M).

    This data set is produced in collaboration with the University of Washington as part of the China in Time and Space (CITAS) project and the Columbia University Center for International Earth Science Information Network (CIESIN).

  14. e

    Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso...

    • envidat.ch
    • data.europa.eu
    json, not available +1
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ionuț Iosifescu Enescu (2025). Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso with Shaded Relief and Water) [Dataset]. http://doi.org/10.16904/envidat.68
    Explore at:
    not available, json, xmlAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Ionuț Iosifescu Enescu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    WSL
    Description

    The attached data are some large GIS raster files (GeoTIFFs) made with Natural Earth data. Natural Earth is a free vector and raster map data @ naturalearthdata.com. The data used for creating these large files was the "Cross Blended Hypso with Shaded Relief and Water". Data was concatenated to achieve larger and larger files. Internal pyramids were created, in order that the files can be opened easily in a GIS software such as QGIS or by a (future) GIS data visualisation module integrated in EnviDat. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com

  15. National Geographic Style Map

    • noveladata.com
    • data.baltimorecity.gov
    • +10more
    Updated May 5, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). National Geographic Style Map [Dataset]. https://www.noveladata.com/maps/f33a34de3a294590ab48f246e99958c9
    Explore at:
    Dataset updated
    May 5, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.

  16. Acadia NP Small-Scale Base GIS Data

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Acadia NP Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/acadia-np-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  17. O

    Terrain with Labels

    • data.sanantonio.gov
    • data.baltimorecity.gov
    • +17more
    html
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Data (2025). Terrain with Labels [Dataset]. https://data.sanantonio.gov/dataset/terrain-with-labels
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    {{source}}
    Authors
    GIS Data
    Description
    This map features shaded relief imagery, bathymetry and coastal water features that provide neutral background with political boundaries and placenames for reference purposes. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Hillshade and Terrain with Labels.

  18. Geospatial data for the Vegetation Mapping Inventory Project of Pictured...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pictured Rocks
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  19. d

    Data from: GIS Data for Geologic Map of the Lake Owen Quadrangle, Albany...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). GIS Data for Geologic Map of the Lake Owen Quadrangle, Albany County, Wyoming [Dataset]. https://catalog.data.gov/dataset/gis-data-for-geologic-map-of-the-lake-owen-quadrangle-albany-county-wyoming
    Explore at:
    Dataset updated
    Nov 13, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Albany County, Wyoming, Lake Owen
    Description

    This U.S. Geological Survey (USGS) data release presents a digital database of geospatially enabled vector layers and tabular data transcribed from the geologic map of the Lake Owen quadrangle, Albany County, Wyoming, which was originally published as U.S. Geological Survey Geologic Quadrangle Map GQ-1304 (Houston and Orback, 1976). The 7.5-minute Lake Owen quadrangle is located in southeastern Wyoming approximately 25 miles (40 kilometers) southwest of Laramie in the west-central interior of southern Albany County, and covers most of the southern extent of Sheep Mountain, the southeastern extent of Centennial Valley, and a portion of the eastern Medicine Bow Mountains. This relational geodatabase, with georeferenced data layers digitized at the publication scale of 1:24,000, organizes and describes the geologic and structural data covering the quadrangle's approximately 35,954 acres and enables the data for use in spatial analyses and computer cartography. The data types presented in this release include geospatial features (points, lines, and polygons) with matching attribute tables, nonspatial descriptive and reference tables, and ancillary resource files for correct symbolization, in formats that conform to the Geologic Map Schema (GeMS) developed and released by the U.S. Geological Survey's National Cooperative Geologic Mapping Program (GeMS, 2020). When reconstructed from the geodatabase's vector layers and tabular data that has been symbolized according to specifications encoded in the accompanying style file, and using the supplied Federal Geographic Data Committee (FGDC) GeoAge font for labeling formations and GeoSym fonts for structural line decorations and orientation measurement symbols, this data release presents the Geologic Map as shown on the published GQ-1304 map sheet. These GIS data augment but do not supersede the information presented on GQ-1304. References: Houston, R.S., and Orback, C.J., 1976, Geologic Map of the Lake Owen Quadrangle, Albany County, Wyoming: U.S. Geological Survey Geologic Quadrangle Map GQ-1304, scale 1:24,000, https://doi.org/10.3133/gq1304. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema)- A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.

  20. O

    Topographic

    • data.sanantonio.gov
    • noveladata.com
    • +17more
    html
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Data (2025). Topographic [Dataset]. https://data.sanantonio.gov/dataset/topographic
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset provided by
    {{source}}
    Authors
    GIS Data
    Description
    This topographic map is designed to be used as a basemap and a reference map. The map has been compiled by Esri and the ArcGIS user community from a variety of best available sources. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Hillshade and World Topographic Map.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2015). EVGmap 50 VMAP2-Compliant GIS Vector Data [Dataset]. https://shop.geospatial.com/publication/92DCQJ687W1J4RP1F85QANBYR1/EVGmap-50-VMAP2-Compliant-GIS-Vector-Data

EVGmap 50 VMAP2-Compliant GIS Vector Data

Explore at:
Dataset updated
Feb 7, 2015
Description

Spatial coverage index compiled by East View Geospatial of set "EVGmap 50 VMAP2-Compliant GIS Vector Data". Source data from EVG (publisher). Type: Topographic. Scale: 1:50,000. Region: World.

Search
Clear search
Close search
Google apps
Main menu