85 datasets found
  1. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  2. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  3. e

    Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso...

    • envidat.ch
    • data.europa.eu
    json, not available +1
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ionuț Iosifescu Enescu (2025). Large GIS raster data derived from Natural Earth Data (Cross Blended Hypso with Shaded Relief and Water) [Dataset]. http://doi.org/10.16904/envidat.68
    Explore at:
    not available, json, xmlAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Ionuț Iosifescu Enescu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    WSL
    Description

    The attached data are some large GIS raster files (GeoTIFFs) made with Natural Earth data. Natural Earth is a free vector and raster map data @ naturalearthdata.com. The data used for creating these large files was the "Cross Blended Hypso with Shaded Relief and Water". Data was concatenated to achieve larger and larger files. Internal pyramids were created, in order that the files can be opened easily in a GIS software such as QGIS or by a (future) GIS data visualisation module integrated in EnviDat. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com

  4. d

    Landcover Raster Data (2010) – 6in Resolution

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Landcover Raster Data (2010) – 6in Resolution [Dataset]. https://catalog.data.gov/dataset/landcover-raster-data-2010-6in-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    6 inch resolution raster image of New York City, classified by landcover type. High resolution land cover data set for New York City. This is the 6 inch version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.

  5. Natural Earth: Public Domain Vector and Raster Data

    • data.wu.ac.at
    zip
    Updated Oct 10, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Geospatial Data (2013). Natural Earth: Public Domain Vector and Raster Data [Dataset]. https://data.wu.ac.at/schema/datahub_io/M2QwNTAwYzEtMWQ3Yy00NDE4LWEyNTAtYWY5MTZjZDIyZmFh
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 10, 2013
    Dataset provided by
    Open Geospatial Consortiumhttps://www.ogc.org/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

    Large scale data, 1:10m

    The most detailed. Suitable for making zoomed-in maps of countries and regions. Show the world on a large wall poster.

    Medium scale data, 1:50m

    Suitable for making zoomed-out maps of countries and regions. Show the world on a tabloid size page.

    Small scale data, 1:110m

    Suitable for schematic maps of the world on a postcard or as a small locator globe.

  6. G

    Geospatial Data Provider Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Nov 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Provider Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-provider-492762
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Nov 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global geospatial data market is poised for significant expansion, projected to reach $3,788 million and grow at a Compound Annual Growth Rate (CAGR) of 6.1% during the forecast period of 2025-2033. This robust growth is propelled by an increasing demand for location-based intelligence across diverse industries. Key drivers include the proliferation of IoT devices generating vast amounts of location data, advancements in satellite imagery and remote sensing technologies, and the growing adoption of AI and machine learning for analyzing complex geospatial datasets. The enterprise sector is emerging as a dominant application segment, leveraging geospatial data for enhanced decision-making in areas such as logistics, urban planning, real estate, and natural resource management. Furthermore, government agencies are increasingly utilizing this data for public safety, infrastructure development, and environmental monitoring. The market is characterized by a bifurcated segmentation between vector data, representing discrete geographic features, and raster data, depicting continuous phenomena like elevation or temperature. Both segments are experiencing healthy growth, driven by specialized applications and analytical needs. Emerging trends include the rise of real-time geospatial data streams, the increasing importance of high-resolution imagery, and the integration of AI-powered analytics to extract deeper insights. However, challenges such as data privacy concerns, high infrastructure costs for data acquisition and processing, and the need for skilled professionals to interpret and utilize the data effectively may pose some restraints. Despite these hurdles, the overwhelming benefits of actionable location intelligence are expected to drive sustained market expansion, with North America and Europe currently leading in adoption, followed closely by the rapidly growing Asia Pacific region. This in-depth report delves into the dynamic and rapidly evolving Geospatial Data Provider market, offering a comprehensive analysis from the historical period of 2019-2024 through to a robust forecast extending to 2033. With the Base Year and Estimated Year set at 2025, the report provides an up-to-the-minute snapshot and a forward-looking perspective on this critical industry. The market size, valued in the millions, is meticulously dissected across various segments, companies, and industry developments.

  7. d

    Land Cover Raster Data (2017) – 6in Resolution

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Land Cover Raster Data (2017) – 6in Resolution [Dataset]. https://catalog.data.gov/dataset/land-cover-raster-data-2017-6in-resolution
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks) For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub. To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md

  8. d

    Data from: Lidar-derived closed depression vector data and density raster in...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lidar-derived closed depression vector data and density raster in karst areas of Monroe County, West Virginia [Dataset]. https://catalog.data.gov/dataset/lidar-derived-closed-depression-vector-data-and-density-raster-in-karst-areas-of-monroe-co
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Monroe County, West Virginia
    Description

    Monroe County in southeastern West Virginia hosts world-class karst within carbonate units of Mississippian and Ordovician age. Lidar-derived elevation data acquired in late December of 2016 were used to create a 3-meter resolution working digital elevation model (DEM), from which surface depressions were identified using a semi-automated workflow in ArcGIS®. Depressions in the automated inventory were systematically checked by a geologist within a grid of 1.5 square kilometer tiles using aerial imagery, lidar-derived imagery, and 3D viewing of the lidar imagery. Distinguishing features such as modification by human activities or hydrological significance (stream sink, ephemerally ponded, etc.) were noted wherever relevant to a particular depression. Relative confidence in depression identification was provided and determined by whether the depression was visible in the lidar imagery, aerial imagery, or both. Statistics on the geometric morphometry of each depression were calculated including perimeter, area, depth, length of major and minor elliptical axes, and azimuth of the major axis. Center points were created for each surface depression and were used to create a point density raster. The density raster displays the number of closed depression points per square kilometer.

  9. Data for workshop: "Introduction to Geospatial Raster and Vector Data with...

    • figshare.com
    zip
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Nattino (2023). Data for workshop: "Introduction to Geospatial Raster and Vector Data with Python" - Wildfires in Rhodes [Dataset]. http://doi.org/10.6084/m9.figshare.24270796.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 9, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Francesco Nattino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Support dataset for the workshop: "Introduction to Geospatial Raster and Vector Data with Python", from the Carpentries Incubator. The focus will be the wildfires that affected Rhodes in July 2023.

  10. Geospatial data for the Vegetation Mapping Inventory Project of Indiana...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Indiana Dunes National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-indiana-dunes-national-lak
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Indiana
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 16, using North American Datum of 1983 (NAD83). To produce a polygon vector layer for use in ArcGIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcGIS (Version 9.2, © 2006 Environmental Systems Research Institute, Redlands, California). In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer of INDU and immediate environs. At this stage, the map layer has only map attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map class names, physiognomic definitions, link to NVC association and alliance codes), we produced a feature class table along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature class layers produced from this project, including vegetation sample plots, accuracy assessment sites, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  11. e

    SM 1:5000 cadastral component raster data - Jindřichův Hradec 7-9

    • data.europa.eu
    Updated Dec 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). SM 1:5000 cadastral component raster data - Jindřichův Hradec 7-9 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-jhra79?locale=en
    Explore at:
    Dataset updated
    Dec 17, 2012
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  12. e

    SM 1:5000 cadastral component raster data - Jevíčko 5-9

    • data.europa.eu
    Updated Dec 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). SM 1:5000 cadastral component raster data - Jevíčko 5-9 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-jevi59?locale=en
    Explore at:
    Dataset updated
    Dec 17, 2012
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  13. w

    Gridded Soil Survey Geographic (gSSURGO-30) Database for the Conterminous...

    • data.wu.ac.at
    • catalog.data.gov
    html
    Updated Oct 2, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture (2014). Gridded Soil Survey Geographic (gSSURGO-30) Database for the Conterminous United States - 30 meter [Dataset]. https://data.wu.ac.at/schema/data_gov/MzIxNTIwZDgtNDFkYS00MWMzLWEzYTktNTFmYWQ2NGVlNjRk
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 2, 2014
    Dataset provided by
    Department of Agriculture
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.

    The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 30 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.

    The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.

    The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).

  14. a

    Corine Land Cover Europe 1990

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Aug 10, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Environment Agency (2012). Corine Land Cover Europe 1990 [Dataset]. https://hub.arcgis.com/maps/c6297d85db3242ec932047a7f878a6a0
    Explore at:
    Dataset updated
    Aug 10, 2012
    Dataset authored and provided by
    European Environment Agency
    Area covered
    Description

    This map service provides dynamic access to data from the Corine Land Cover 1990 inventory. CORINE Land Cover (CLC) is a geographic land cover/land use database encompassing most of the countries of Europe. In 1985 the Corine programme was initiated in the European Union. Corine means 'coordination of information on the environment' and it was a prototype project working on many different environmental issues. The Corine databases and several of its programme have been taken over by the EEA. One of these is an inventory of land cover in 44 classes organised hierarchically in three levels, and presented as a cartographic product, at a scale of 1:100 000. The first level (5 classes) corresponds to the main categories of the land cover/land use (artificial areas, agricultural land, forests and semi-natural areas, wetlands, water surfaces). The second level (15 classes) covers physical and physiognomic entities at a higher level of detail (urban zones, forests, lakes, etc), finally level 3 is composed of 44 classes. CLC was elaborated based on the visual interpretation of satellite images (SPOT, LANDSAT TM and MSS). Ancillary data (aerial photographs, topographic or vegetation maps, statistics, local knowledge) were used to refine interpretation and the assignment of the territory into the categories of the CORINE Land Cover nomenclature. The smallest surfaces mapped (minimum mapping units) correspond to 25 hectares. Linear features less than 100 m in width are not considered. The scale of the output product was fixed at 1:100.000. Thus, the location precision of the CLC database is 100 m. This database is operationally available for most areas of Europe. Original inventories, based on and interpreted from satellite imagery as well as ancillary information sources, are stored within national institutions. One of the major tasks undertaken in the framework of the Corine programme has been the establishment of a computerised inventory on the land cover. Data on land cover is necessary for the environment policy as well as for other policies such as regional development and agriculture. At the same time it provides one of the basic inputs for the production of more complex information on other themes (soil erosion, pollutant emission into the air by the vegetation, etc.). The objectives of the land cover project are: - to provide those responsible for and interested in the European policy on the environment with quantitative data on land cover, consistent and comparable across Europe. Geographical coverage: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Montenegro, Netherlands, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Turkey Corine Land Cover 1990 raster data - version 16 (04/2012) can be accessed here: http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-1990-raster-2

  15. G

    Geospatial Data Provider Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Provider Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-provider-492758
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Data Provider market is booming, projected to reach $6.225 billion by 2033 with a 6.1% CAGR. Discover key trends, regional analysis, leading companies (Esri, SafeGraph, PlanetObserver), and future growth opportunities in this comprehensive market report.

  16. r

    Navitrainer 2

    • opendata.rcmrd.org
    Updated May 29, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chara_chatz (2015). Navitrainer 2 [Dataset]. https://opendata.rcmrd.org/maps/3d1a391dcb784e00bf745e849c8b8b9f
    Explore at:
    Dataset updated
    May 29, 2015
    Dataset authored and provided by
    chara_chatz
    Area covered
    Description

    This map provides dynamic access to data from the three layers of Corine Land Cover 1990, 2000 and 2006. Data are available as 100 meter pixel raster images at small scales up to 1:800.000 and at higher scales as vectors. CORINE Land Cover (CLC) is a geographic land cover/land use database encompassing most of the countries of Europe. In 1985 the Corine programme was initiated in the European Union. Corine means 'coordination of information on the environment' and it was a prototype project working on many different environmental issues. The Corine databases and several of its programme have been taken over by the EEA. One of these is an inventory of land cover in 44 classes organised hierarchically in three levels, and presented as a cartographic product, at a scale of 1:100 000. The first level (5 classes) corresponds to the main categories of the land cover/land use (artificial areas, agricultural land, forests and semi-natural areas, wetlands, water surfaces). The second level (15 classes) covers physical and physiognomic entities at a higher level of detail (urban zones, forests, lakes, etc), finally level 3 is composed of 44 classes. CLC was elaborated based on the visual interpretation of satellite images (SPOT, LANDSAT TM and MSS). Ancillary data (aerial photographs, topographic or vegetation maps, statistics, local knowledge) were used to refine interpretation and the assignment of the territory into the categories of the CORINE Land Cover nomenclature. The smallest surfaces mapped (minimum mapping units) correspond to 25 hectares. Linear features less than 100 m in width are not considered. The scale of the output product was fixed at 1:100.000. Thus, the location precision of the CLC database is 100 m. This database is operationally available for most areas of Europe. Original inventories, based on and interpreted from satellite imagery as well as ancillary information sources, are stored within national institutions. One of the major tasks undertaken in the framework of the Corine programme has been the establishment of a computerised inventory on the land cover. Data on land cover is necessary for the environment policy as well as for other policies such as regional development and agriculture. At the same time it provides one of the basic inputs for the production of more complex information on other themes (soil erosion, pollutant emission into the air by the vegetation, etc.). The objectives of the land cover project are: - to provide those responsible for and interested in the European policy on the environment with quantitative data on land cover, consistent and comparable across Europe. Geographical coverage: Varies depending on layer.Corine Land Cover 1990 raster data - version 16 (04/2012)Corine Land Cover 2000 seamless vector data - version 16 (04/2012)Corine Land Cover 2006 seamless vector data - version 16 (04/2012)

  17. d

    Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-raster-analysis
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full geodatabase inventory (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to prioritize overlapping designations, avoiding massive overestimation in protected area statistics, and simplified by the following PAD-US attributes to support user needs for raster analysis data: Manager Type, Manager Name, Designation Type, GAP Status Code, Public Access, and State Name. The rasterization process (see processing steps below) prioritized overlapping designations previously identified (GAP_Prity field) in the Vector Analysis File (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation (e.g. GAP Status Code 1 over 2). The 30-meter Image (IMG) grid Raster Analysis Files area extents were defined by the Census state boundary file used to clip the Vector Analysis File, the data source for rasterization ("PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class from ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb"). Alaska (AK) and Hawaii (HI) raster data are separated from the contiguous U.S. (CONUS) to facilitate analyses at manageable scales. Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types (with a legal protection mechanism) represented in some manner, while work continues to maintain updates, improve data quality, and integrate new data as it becomes available (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, protection status represents a point-in-time and changes in status between versions of PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  18. e

    SM 1:5000 cadastral component raster data - Blansko 8-8

    • data.europa.eu
    Updated Oct 31, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). SM 1:5000 cadastral component raster data - Blansko 8-8 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-blan88?locale=en
    Explore at:
    Dataset updated
    Oct 31, 2021
    Area covered
    Blansko
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  19. terraceDL: A geomorphology deep learning dataset of agricultural terraces in...

    • figshare.com
    bin
    Updated Mar 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron Maxwell (2023). terraceDL: A geomorphology deep learning dataset of agricultural terraces in Iowa, USA [Dataset]. http://doi.org/10.6084/m9.figshare.22320373.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 22, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Aaron Maxwell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, United States
    Description

    scripts.zip

    arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).

    makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).

    terraceDL.zip

    dems: LiDAR DTM data partitioned into training, testing, and validation datasets based on HUC8 watershed boundaries. Original DTM data were provided by the Iowa BMP mapping project: https://www.gis.iastate.edu/BMPs. extents: extents of the training, testing, and validation areas as defined by HUC 8 watershed boundaries. vectors: vector features representing agricultural terraces and partitioned into separate training, testing, and validation datasets. Original digitized features were provided by the Iowa BMP Mapping Project: https://www.gis.iastate.edu/BMPs.

  20. c

    Data from: Geospatial geologic structural datasets, Chattanooga Shale, Wells...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Geospatial geologic structural datasets, Chattanooga Shale, Wells Creek Dolomite, and Knox Group, Tennessee, USA [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/geospatial-geologic-structural-datasets-chattanooga-shale-wells-creek-dolomite-and-knox-gr
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Tennessee, United States
    Description

    Data about the top and bottom altitude, depth from land surface and/or the thickness of three geologic units in Tennessee were converted into geospatial format for this USGS data release from previously published paper maps and converted into digital formats for use by the public. The three geologic units were the Chattanooga Shale of Mississippian-Devonian age (Moore and Horton, 1999), the Wells Creek Dolomite of middle Ordovician age (Smith, 1959), and the Knox Group of lower Ordovician age (Newcome, 1954). These geologic units represent important geologic horizons across Tennessee. Geologic structure maps provide important information and, in digital format, support investigative and modeling efforts pertaining to water and mineral resources. Prior to this work, the paper source maps used for this data release existed in limited quantities, mainly restricted to the Nashville, TN offices of the Tennessee Department of Environment and Conservation (TDEC) and United States Geological Survey (USGS). The work for this project included (1) scanning and georeferencing original paper maps to create georeferenced images (GRI), (2) digitizing well _location points and contour lines, (3) populating well and contour attribute tables with data from maps and associated reports, and (4) when possible, interpolating raster surfaces for the three geologic units of top and bottom altitude, depth from land surface to the top and bottom surface, and thickness. All raster surfaces were aligned to a modified version of the National Hydrogeologic Grid (Clark and others, 2018) to support USGS Lower Mississippi Gulf Water Science Center efforts to create a statewide hydrogeologic framework. All horizontal coordinated data are projected to NAD 1983 USGS Contiguous USA Albers. The raster vertical coordinate information was referenced to the North American Vertical Datum of 1988 (NAVD 88). This data release includes GRIs, vector data of the wells and mapped contours of top, bottom, or thickness, raster data, and related metadata files for each three geologic units under the associated child item tab. Dataset types can be identified by the following naming convention: i_ = georeferenced map images (GRI) po_ = points c_ = contours and closed depressions f_= faults and other structural features p_ = extent polygon ra_ = altitude raster rd_ = depth from land surface raster rt_ = thickness raster The datasets included on this main landing page are as follows: project_metadata.xml – metadata file for general project information studyarea_ext.zip: p_chttshl_ext.shp - mapped extent of the Chattanooga Shale in Tennessee p_wllscr_ext.shp - mapped extent of the Wells Creek Dolomite in Tennessee p_knx_ext.shp - mapped extent of the Knox Group in Tennessee The datasets included on the child item pages are as follows: Chattanooga Shale: geospatial geologic structural datasets in Tennessee: chttshl_metadata.xml - metadata file chttshl_alldata.zip: GRI/ i_chttshl_btm.tif - structure contour map of the bottom of the Chattanooga Shale (Moore and Horton, 1999) i_chttshl_data.tif - map of data used to create structure and isopach maps (Moore and Horton, 1999) i_chttshl_thk.tif - thickness contour map for the Chattanooga Shale (Moore and Horton, 1999) polygons/ p_knx_ext.shp - study area extent for the Chattanooga Shale p_hohenwald.shp - polygon for extend of the Hohenwald Platform (Moore and Horton, 1999) - supplemental data rasters/ ra_chttshl_btm.tif - altitude raster for the bottom of the Chattanooga Shale ra_chttshl_tp.tif - altitude raster for the top of the Chattanooga Shale rd_chttshl_btm.tif - depth from land surface raster of the bottom of the Chattanooga Shale rd_chttshl_tp.tif - depth from land surface raster of the top of the Chattanooga Shale rt_chttshl.tif - thickness raster for the Chattanooga Shale vectors/ c_chttshl_btm.shp - structure contours for the bottom of the Chattanooga Shale c_chttshl_btm_modified.shp - modified structure contours for the bottom of the Chattanooga Shale (hachures removed from closed basins). This vector used to interpolated raster for the bottom of the Chattanooga Shale c_chttshl_thk.shp - thickness contours for the Chattanooga Shale c_chttshl_thk_modified.shp - modified thickness contours for the Chattanooga Shale (hachures removed from closed basins). This vector used to interpolated raster for the thickness of the Chattanooga Shale po_chttshl.shp - point data of altitude and thickness for the Chattanooga Shale Knox Group: geospatial geologic structural datasets in Middle Tennessee: knx_metadata.xml - metadata file knx_alldata.zip: GRI/ i_knx_tp.tif - structure contour map on the top of the Knox Group (Newcome, 1954) i_knx_outcrop.tif - map of the Wells Creek Disturbance (Wilson and Stearns, 1968) polygons/ p_chttshl_ext.shp - study area extent for the Knox Group p_hohenwald.shp - extent of the Hohenwald Platform - supplemental data rasters/ ra_knx_tp.tif - altitude raster for the top of the Knox Group rd_knx_tp.tif - depth from land surface raster of the top of Knox Group vectors/ c_knx_tp.shp - structure contours for the top of the Knox Group c_knx_tp_modified.shp - modified structure contours for the top of the Knox Group (hachures removed from closed basins). This vector used to interpolated raster for the top of the Knox Group po_knx_tp.shp - point data for the altitude of top of the Knox Group Wells Creek Dolomite: geospatial geologic structural datasets in Tennessee: wllscr_metadata.xml - metadata file wllscr_alldata.zip: GRI/ i_wllscr.tif - thickness contour map for the Wells Creek Dolomite (Smith, 1959) polygons/ p_wllscr_ext.shp - study area extent for the Wells Creek Dolomite rasters/ ra_wllscr_btm.tif - altitude raster for the bottom of the Wells Creek Dolomite (same dataset as ra_knx_tp.tif [Newcome, 1954; Smith, 1959]) ra_wllscr_tp.tif - altitude raster for the top of the Wells Creek Dolomite rd_wllscr_btm.tif - depth from land surface raster of the bottom of the Wells Creek Dolomite (same dataset as ra_knx_tp.tif [Newcome, 1954; Smith, 1959]) rd_wllscr_tp.tif - depth from land surface raster of the top of the Wells Creek Dolomite rt_wllscr.tif - thickness raster for the Wells Creek Dolomite vectors/ c_wllscr.shp - thickness contours for the Wells Creek Dolomite po_wllscr.shp - point data for the thickness of Wells Creek Dolomite References: Moore, J.L., and Horton, A.B., 1999, Structure and Isopach Maps of the Chattanooga Shale in Tennessee, Tennessee Dept. of Conservation, Division of Geology, Report of Investigations 48, 3 plates. Newcome, R. Jr., 1954, Structure contour map on top of the Knox Dolomite in Middle Tennessee, Tennessee Division of Geology, Ground-Water Investigations Preliminary Chart 5, 1 sheet. Smith, O. Jr., 1959, Isopach map of the Wells Creek Dolomite in Middle Tennessee: Tennessee Division of Water Resources, one sheet. Wilson, C.W. and Stearns, R.G., 1968 Geology of the Wells Creek Structure, Tennessee: Tennessee Division of Geology, Bulletin 68, 248 p.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896

Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 7, 2021
Dataset provided by
ESS-DIVE
Authors
Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
Time period covered
Jan 1, 2008 - Jan 1, 2012
Area covered
Description

This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

Search
Clear search
Close search
Google apps
Main menu