82 datasets found
  1. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  2. r

    Natural Earth Vector (NE)

    • researchdata.edu.au
    • catalogue.eatlas.org.au
    bin
    Updated Aug 2, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathaniel Vaughn KELSO (2016). Natural Earth Vector (NE) [Dataset]. https://researchdata.edu.au/natural-earth-vector-ne/675135
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 2, 2016
    Dataset provided by
    eAtlas
    Authors
    Nathaniel Vaughn KELSO
    Area covered
    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

    Natural Earth was built through a collaboration of many volunteers and is supported by NACIS (North American Cartographic Information Society).

    Natural Earth Vector comes in ESRI shapefile format, the de facto standard for vector geodata. Character encoding is Windows-1252.

    Natural Earth Vector includes features corresponding to the following:

    Cultural Vector Data Thremes:

    • Countries: matched boundary lines and polygons with names attributes for countries and sovereign states. Includes dependencies (French Polynesia), map units (U.S. Pacific Island Territories) and sub-national map subunits (Corsica versus mainland Metropolitan France).
    • Disputed areas and breakaway regions - From Kashmir to the Elemi Triangle, Northern Cyprus to Western Sahara.
    • First order admin (provinces, departments, states, etc.): internal boundaries and polygons for all but a few tiny island nations. Includes names attributes and some statistical groupings of the same for smaller countries.
    • Populated places: point symbols with name attributes. Includes capitals, major cities and towns, plus significant smaller towns in sparsely inhabited regions. We favor regional significance over population census in determining rankings.
    • Urban polygons: derived from 2002-2003 MODIS satellite data.
    • Parks and protected areas: US National Park Service units.
    • Pacific nation groupings: boxes for keeping these far-flung islands tidy.
    • Water boundary indicators: partial selection of key 200-mile nautical limits, plus some disputed, treaty, and median lines.

    Physical Vector Data Themes:

    • Coastline: ocean coastline, including major islands. Coastline is matched to land and water polygons.
    • Land: Land polygons including major islands
    • Ocean: Ocean polygon split into contiguous pieces.
    • Minor Islands: additional small ocean islands ranked to two levels of relative importance.
    • Reefs: major coral reefs from WDB2.
    • Physical region features: polygon and point labels of major physical features.
    • Rivers and Lake Centerlines: ranked by relative importance. Includes name and line width attributes. Don’t want minor lakes? Turn on their centerlines to avoid unseemly data gaps.
    • Lakes: ranked by relative importance, coordinating with river ranking. Includes name attributes.
    • Glaciated areas: polygons derived from DCW, except for Antarctica derived from MOA. Includes name attributes for major polar glaciers.
    • Antarctic ice shelves: derived from 2003-2004 MOA. Reflects recent ice shelf collapses.
    • Bathymetry: nested polygons at 0, -200, -1,000, -2,000, -3,000, -4,000, -5,000, -6,000, -7,000, -8,000, -9,000,and -10,000 meters. Created from SRTM Plus.
    • Geographic lines: Polar circles, tropical circles, equator, and International Date Line.
    • Graticules: 1-, 5-, 10-, 15-, 20-, and 30-degree increments. Includes WGS84 bounding box.
  3. d

    Lidar-derived closed depression vector data and density raster in karst...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Lidar-derived closed depression vector data and density raster in karst areas of Monroe County, West Virginia [Dataset]. https://catalog.data.gov/dataset/lidar-derived-closed-depression-vector-data-and-density-raster-in-karst-areas-of-monroe-co
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Monroe County, West Virginia
    Description

    Monroe County in southeastern West Virginia hosts world-class karst within carbonate units of Mississippian and Ordovician age. Lidar-derived elevation data acquired in late December of 2016 were used to create a 3-meter resolution working digital elevation model (DEM), from which surface depressions were identified using a semi-automated workflow in ArcGIS®. Depressions in the automated inventory were systematically checked by a geologist within a grid of 1.5 square kilometer tiles using aerial imagery, lidar-derived imagery, and 3D viewing of the lidar imagery. Distinguishing features such as modification by human activities or hydrological significance (stream sink, ephemerally ponded, etc.) were noted wherever relevant to a particular depression. Relative confidence in depression identification was provided and determined by whether the depression was visible in the lidar imagery, aerial imagery, or both. Statistics on the geometric morphometry of each depression were calculated including perimeter, area, depth, length of major and minor elliptical axes, and azimuth of the major axis. Center points were created for each surface depression and were used to create a point density raster. The density raster displays the number of closed depression points per square kilometer.

  4. a

    Marine Download Merged INFOMAR/INSS Survey Data Irish Waters WGS84 Web Map

    • opendata-geodata-gov-ie.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Oct 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geological Survey Ireland (2021). Marine Download Merged INFOMAR/INSS Survey Data Irish Waters WGS84 Web Map [Dataset]. https://opendata-geodata-gov-ie.hub.arcgis.com/maps/8e2f148edc5f4aaabbdce38b547312d7
    Explore at:
    Dataset updated
    Oct 7, 2021
    Dataset authored and provided by
    Geological Survey Ireland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This data shows areas where merged survey bathymetry and backscatter data exists and allows you to download the data. The data was collected between 2001 and 2021.Bathymetry is the measurement of how deep is the sea. Bathymetry is the study of the shape and features of the seabed. The name comes from Greek words meaning "deep" and “measure". Bathymetry is collected on board boats working at sea and airplanes over land and coastline. The boats use special equipment called a multibeam echosounder. A multibeam echosounder is a type of sonar that is used to map the seabed. Sound waves are emitted in a fan shape beneath the boat. The amount of time it takes for the sound waves to bounce off the bottom of the sea and return to a receiver is used to determine water depth. The strength of the sound wave is used to determine how hard the bottom of the sea is. In other words, backscatter is the measure of sound that is reflected by the seafloor and received by the sonar. A strong sound wave indicates a hard surface (rocks, gravel), and a weak return signal indicates a soft surface (silt, mud).LiDAR is another way to map the seabed, using airplanes. Two laser light beams are emitted from a sensor on-board an airplane. The red beam reaches the water surface and bounces back; while the green beam penetrates the water hits the seabed and bounces back. The difference in time between the two beams returning allows the water depth to be calculated. LiDAR is only suitable for shallow waters (up to 30m depth).This data shows areas which have data available for download in Irish waters. These are areas where several surveys have been merged together.It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).This data is shown as polygons. Each polygon holds information on the data type (bathymetry or backscatter), format of data available for download (GEOTIFF, ESRI GRID), its resolution, projection, last update and provides links to download the data.The data available for download are raster datasets. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns.This data was collected using a boat or plane. Data is output in xyz format. X and Y are the location and Z is the depth or backscatter value. A software package converts it into gridded data. The grid cell size varies. Most of this data is available at 10m resolution. Each grid cell size is 10 meter by 10 meter. This means that each cell (pixel) represents an area of 10 meter squared.ESRI GRID datasets contain the depth value. This means you can click on a location and get its depth.GEOTIFFS are images of the data and only record colour values. We use software to create a 3D effect of what the seabed looks like. By using vertical exaggeration, artificial sun-shading (mostly as if there is a light source in the northwest) and colouring the depths using colour maps, it is possible to highlight the subtle relief of the seabed. The darker shading represents a deeper depths and lighter shading represents shallower depths.This data shows areas that have been surveyed. There are plans to fill in the missing areas between 2020 and 2026. The deeper offshore waters were mapped as part of the Irish National Seabed Survey (INSS) between 1999 and 2005. INtegrated Mapping FOr the Sustainable Development of Ireland's MArine Resource (INFOMAR) is mapping the inshore areas. (2006 - 2026).

  5. d

    Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-raster-analysis
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full geodatabase inventory (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to prioritize overlapping designations, avoiding massive overestimation in protected area statistics, and simplified by the following PAD-US attributes to support user needs for raster analysis data: Manager Type, Manager Name, Designation Type, GAP Status Code, Public Access, and State Name. The rasterization process (see processing steps below) prioritized overlapping designations previously identified (GAP_Prity field) in the Vector Analysis File (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation (e.g. GAP Status Code 1 over 2). The 30-meter Image (IMG) grid Raster Analysis Files area extents were defined by the Census state boundary file used to clip the Vector Analysis File, the data source for rasterization ("PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class from ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb"). Alaska (AK) and Hawaii (HI) raster data are separated from the contiguous U.S. (CONUS) to facilitate analyses at manageable scales. Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types (with a legal protection mechanism) represented in some manner, while work continues to maintain updates, improve data quality, and integrate new data as it becomes available (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, protection status represents a point-in-time and changes in status between versions of PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  6. e

    SM 1:5000 cadastral component raster data - Havlíčkův Brod 9-3

    • data.europa.eu
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). SM 1:5000 cadastral component raster data - Havlíčkův Brod 9-3 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-hbro93
    Explore at:
    Dataset updated
    Oct 14, 2021
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  7. N

    Landcover Raster Data (2010) – 3ft Resolution

    • data.cityofnewyork.us
    • s.cnmilf.com
    • +3more
    application/rdfxml +5
    Updated Jun 28, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Parks and Recreation (DPR) (2012). Landcover Raster Data (2010) – 3ft Resolution [Dataset]. https://data.cityofnewyork.us/widgets/9auy-76zt
    Explore at:
    application/rssxml, application/rdfxml, tsv, csv, xml, jsonAvailable download formats
    Dataset updated
    Jun 28, 2012
    Dataset authored and provided by
    Department of Parks and Recreation (DPR)
    Description

    High resolution land cover data set for New York City. This is the 3ft version of the high-resolution land cover dataset for New York City. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The minimum mapping unit for the delineation of features was set at 3 square feet. The primary sources used to derive this land cover layer were the 2010 LiDAR and the 2008 4-band orthoimagery. Ancillary data sources included GIS data (city boundary, building footprints, water, parking lots, roads, railroads, railroad structures, ballfields) provided by New York City (all ancillary datasets except railroads); UVM Spatial Analysis Laboratory manually created railroad polygons from manual interpretation of 2008 4-band orthoimagery. The tree canopy class was considered current as of 2010; the remaining land-cover classes were considered current as of 2008. Object-Based Image Analysis (OBIA) techniques were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. More than 35,000 corrections were made to the classification. Overall accuracy was 96%. This dataset was developed as part of the Urban Tree Canopy (UTC) Assessment for New York City. As such, it represents a 'top down' mapping perspective in which tree canopy over hanging other features is assigned to the tree canopy class. At the time of its creation this dataset represents the most detailed and accurate land cover dataset for the area. This project was funded by National Urban and Community Forestry Advisory Council (NUCFAC) and the National Science Fundation (NSF), although it is not specifically endorsed by either agency. The methods used were developed by the University of Vermont Spatial Analysis Laboratory, in collaboration with the New York City Urban Field Station, with funding from the USDA Forest Service.

  8. a

    Florida Cooperative Land Cover (Raster)

    • mapdirect-fdep.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jan 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Fish and Wildlife Conservation Commission (2022). Florida Cooperative Land Cover (Raster) [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/documents/9b791b9269f14caea04d995f8fbe6a14
    Explore at:
    Dataset updated
    Jan 1, 2022
    Dataset authored and provided by
    Florida Fish and Wildlife Conservation Commission
    Area covered
    Description

    The Cooperative Land Cover Map is a project to develop an improved statewide land cover map from existing sources and expert review of aerial photography. The project is directly tied to a goal of Florida's State Wildlife Action Plan (SWAP) to represent Florida's diverse habitats in a spatially-explicit manner. The Cooperative Land Cover Map integrates 3 primary data types: 1) 6 million acres are derived from local or site-specific data sources, primarily on existing conservation lands. Most of these sources have a ground-truth or local knowledge component. We collected land cover and vegetation data from 37 existing sources. Each dataset was evaluated for consistency and quality and assigned a confidence category that determined how it was integrated into the final land cover map. 2) 1.4 million acres are derived from areas that FNAI ecologists reviewed with high resolution aerial photography. These areas were reviewed because other data indicated some potential for the presence of a focal community: scrub, scrubby flatwoods, sandhill, dry prairie, pine rockland, rockland hammock, upland pine or mesic flatwoods. 3) 3.2 million acres are represented by Florida Land Use Land Cover data from the FL Department of Environmental Protection and Water Management Districts (FLUCCS). The Cooperative Land Cover Map integrates data from the following years: NWFWMD: 2006 - 07 SRWMD: 2005 - 08 SJRWMD: 2004 SFWMD: 2004 SWFWMD: 2008 All data were crosswalked into the Florida Land Cover Classification System. This project was funded by a grant from FWC/Florida's Wildlife Legacy Initiative (Project 08009) to Florida Natural Areas Inventory. The current dataset is provided in 10m raster grid format.Changes from Version 1.1 to Version 2.3:CLC v2.3 includes updated Florida Land Use Land Cover for four water management districts as described above: NWFWMD, SJRWMD, SFWMD, SWFWMDCLC v2.3 incorporates major revisions to natural coastal land cover and natural communities potentially affected by sea level rise. These revisions were undertaken by FNAI as part of two projects: Re-evaluating Florida's Ecological Conservation Priorities in the Face of Sea Level Rise (funded by the Yale Mapping Framework for Biodiversity Conservation and Climate Adaptation) and Predicting and Mitigating the Effects of Sea-Level Rise and Land Use Changes on Imperiled Species and Natural communities in Florida (funded by an FWC State Wildlife Grant and The Kresge Foundation). FNAI also opportunistically revised natural communities as needed in the course of species habitat mapping work funded by the Florida Department of Environmental Protection. CLC v2.3 also includes several new site specific data sources: New or revised FNAI natural community maps for 13 conservation lands and 9 Florida Forever proposals; new Florida Park Service maps for 10 parks; Sarasota County Preserves Habitat Maps (with FNAI review); Sarasota County HCP Florida Scrub-Jay Habitat (with FNAI Review); Southwest Florida Scrub Working Group scrub polygons. Several corrections to the crosswalk of FLUCCS to FLCS were made, including review and reclassification of interior sand beaches that were originally crosswalked to beach dune, and reclassification of upland hardwood forest south of Lake Okeechobee to mesic hammock. Representation of state waters was expanded to include the NOAA Submerged Lands Act data for Florida.Changes from Version 2.3 to 3.0: All land classes underwent revisions to correct boundaries, mislabeled classes, and hard edges between classes. Vector data was compared against high resolution Digital Ortho Quarter Quads (DOQQ) and Google Earth imagery. Individual land cover classes were converted to .KML format for use in Google Earth. Errors identified through visual review were manually corrected. Statewide medium resolution (spatial resolution of 10 m) SPOT 5 images were available for remote sensing classification with the following spectral bands: near infrared, red, green and short wave infrared. The acquisition dates of SPOT images ranged between October, 2005 and October, 2010. Remote sensing classification was performed in Idrisi Taiga and ERDAS Imagine. Supervised and unsupervised classifications of each SPOT image were performed with the corrected polygon data as a guide. Further visual inspections of classified areas were conducted for consistency, errors, and edge matching between image footprints. CLC v3.0 now includes state wide Florida NAVTEQ transportation data. CLC v3.0 incorporates extensive revisions to scrub, scrubby flatwoods, mesic flatwoods, and upland pine classes. An additional class, scrub mangrove – 5252, was added to the crosswalk. Mangrove swamp was reviewed and reclassified to include areas of scrub mangrove. CLC v3.0 also includes additional revisions to sand beach, riverine sand bar, and beach dune previously misclassified as high intensity urban or extractive. CLC v3.0 excludes the Dry Tortugas and does not include some of the small keys between Key West and Marquesas.Changes from Version 3.0 to Version 3.1: CLC v3.1 includes several new site specific data sources: Revised FNAI natural community maps for 31 WMAs, and 6 Florida Forever areas or proposals. This data was either extracted from v2.3, or from more recent mapping efforts. Domains have been removed from the attribute table, and a class name field has been added for SITE and STATE level classes. The Dry Tortugas have been reincorporated. The geographic extent has been revised for the Coastal Upland and Dry Prairie classes. Rural Open and the Extractive classes underwent a more thorough reviewChanges from Version 3.1 to Version 3.2:CLC v3.2 includes several new site specific data sources: Revised FNAI natural community maps for 43 Florida Park Service lands, and 9 Florida Forever areas or proposals. This data is from 2014 - 2016 mapping efforts. SITE level class review: Wet Coniferous plantation (2450) from v2.3 has been included in v3.2. Non-Vegetated Wetland (2300), Urban Open Land (18211), Cropland/Pasture (18331), and High Pine and Scrub (1200) have undergone thorough review and reclassification where appropriate. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.2.5 to Version 3.3: The CLC v3.3 includes several new site specific data sources: Revised FNAI natural community maps for 14 FWC managed or co-managed lands, including 7 WMA and 7 WEA, 1 State Forest, 3 Hillsboro County managed areas, and 1 Florida Forever proposal. This data is from the 2017 – 2018 mapping efforts. Select sites and classes were included from the 2016 – 2017 NWFWMD (FLUCCS) dataset. M.C. Davis Conservation areas, 18331x agricultural classes underwent a thorough review and reclassification where appropriate. Prairie Mesic Hammock (1122) was reclassified to Prairie Hydric Hammock (22322) in the Everglades. All SITE level Tree Plantations (18333) were reclassified to Coniferous Plantations (183332). The addition of FWC Oyster Bar (5230) features. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com, including classification corrections to sites in T.M. Goodwin and Ocala National Forest. CLC v3.3 utilizes the updated The Florida Land Cover Classification System (2018), altering the following class names and numbers: Irrigated Row Crops (1833111), Wet Coniferous Plantations (1833321) (formerly 2450), Major Springs (4131) (formerly 3118). Mixed Hardwood-Coniferous Swamps (2240) (formerly Other Wetland Forested Mixed).Changes from Version 3.4 to Version 3.5: The CLC v3.5 includes several new site specific data sources: Revised FNAI natural community maps for 16 managed areas, and 10 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2019 – 2020 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. This version of the CLC is also the first to include land identified as Salt Flats (5241).Changes from Version 3.5 to 3.6: The CLC v3.6 includes several new site specific data sources: Revised FNAI natural community maps for 11 managed areas, and 24 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2018 – 2022 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.6 to 3.7: The CLC 3.7 includes several new site specific data sources: Revised FNAI natural community maps for 5 managed areas (2022-2023). Revised Palm Beach County Natural Areas data for Pine Glades Natural Area (2023). Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. In this version a few SITE level classifications are reclassified for the STATE level classification system. Mesic Flatwoods and Scrubby Flatwoods are classified as Dry Flatwoods at the STATE level. Upland Glade is classified as Barren, Sinkhole, and Outcrop Communities at the STATE level. Lastly Upland Pine is classified as High Pine and Scrub at the STATE level.

  9. a

    Marine Download Survey Leg INFOMAR/INSS Data Irish Waters WGS84 Web Map

    • hub.arcgis.com
    • opendata-geodata-gov-ie.hub.arcgis.com
    • +1more
    Updated Oct 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geological Survey Ireland (2021). Marine Download Survey Leg INFOMAR/INSS Data Irish Waters WGS84 Web Map [Dataset]. https://hub.arcgis.com/maps/2e97ca9e7d5a4ab38605b79b8fff677e
    Explore at:
    Dataset updated
    Oct 7, 2021
    Dataset authored and provided by
    Geological Survey Ireland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This data shows areas where survey leg report and bathymetry, backscatter and sub-bottom profile data exists and allows you to download the data. The data was collected between 1996 and 2021.Bathymetry is the measurement of how deep is the sea. Bathymetry is the study of the shape and features of the seabed. The name comes from Greek words meaning "deep" and “measure". Bathymetry is collected on board boats working at sea and airplanes over land and coastline. The boats use special equipment called a multibeam echosounder. A multibeam echosounder is a type of sonar that is used to map the seabed. Sound waves are emitted in a fan shape beneath the boat. The amount of time it takes for the sound waves to bounce off the bottom of the sea and return to a receiver is used to determine water depth. The strength of the sound wave is used to determine how hard the bottom of the sea is. In other words, backscatter is the measure of sound that is reflected by the seafloor and received by the sonar. A strong sound wave indicates a hard surface (rocks, gravel), and a weak return signal indicates a soft surface (silt, mud). Another piece of equipment is used called a sub-bottom profiler.Sub-bottom profile data shows the rock features and the sediment layers that are below the seabed. LiDAR is another way to map the seabed, using airplanes. Two laser light beams are emitted from a sensor on-board an airplane. The red beam reaches the water surface and bounces back; while the green beam penetrates the water hits the seabed and bounces back. The difference in time between the two beams returning allows the water depth to be calculated. LiDAR is only suitable for shallow waters (up to 30m depth).This data shows areas which have data available for download in Irish waters. It is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).This data is shown as polygons. Each polygon holds information on the survey leg details (name, vessel, year,date etc). It also provides links where available to download bathymetry (GEOTIFF, ESRI GRID, xyz), backscatter (GEOTIFF), survey report (pdf) and sub-bottom profile (SEGY) data in various formats.The data available for download are raster datasets. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns.This data was collected using a boat or plane. Data is output in xyz format. X and Y are the location and Z is the depth or backscatter value. A software package converts it into gridded data. The grid cell size varies. If the resolution is 10m - Each grid cell size is 10 meter by 10 meter. This means that each cell (pixel) represents an area of 10 meter squared.ESRI GRID datasets contain the depth value. This means you can click on a location and get its depth.GEOTIFFS are images of the data and only record colour values. We use software to create a 3D effect of what the seabed looks like. By using vertical exaggeration, artificial sun-shading (mostly as if there is a light source in the northwest) and colouring the depths using colour maps, it is possible to highlight the subtle relief of the seabed. The darker shading represents a deeper depths and lighter shading represents shallower depths.The gridded XYZ data is also available.This data shows areas that have been surveyed. There are plans to fill in the missing areas between 2020 and 2026. The deeper offshore waters were mapped as part of the Irish National Seabed Survey (INSS) between 1999 and 2005. INtegrated Mapping FOr the Sustainable Development of Ireland's MArine Resource (INFOMAR) is mapping the inshore areas. (2006 - 2026).

  10. w

    Geoscience Australia GEODATA TOPO series - 1:1 Million to 1:10 Million scale...

    • data.wu.ac.at
    • researchdata.edu.au
    • +1more
    zip
    Updated Oct 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Programme (2018). Geoscience Australia GEODATA TOPO series - 1:1 Million to 1:10 Million scale [Dataset]. https://data.wu.ac.at/schema/data_gov_au/MWFjZTEzYzgtODExNS00YmUzLWE4ZjQtNmRlMDU2NGViYjkz
    Explore at:
    zip(108525691.0)Available download formats
    Dataset updated
    Oct 9, 2018
    Dataset provided by
    Bioregional Assessment Programme
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    This dataset contains 4 different scale GEODATA TOPO series, Geoscience Australia topographic datasets. 1M, 2.5M, 5M and 10M with age ranges from 2001 to 2004.

    1:1 Million - Global Map Australia 1M 2001 is a digital dataset covering the Australian landmass and island territories, at a 1:1 million scale. Product Specifications -Themes: It consists of eight layers of information: Vector layers - administrative boundaries, drainage, transportation and population centres Raster layers - elevation, vegetation, land use and land cover -Coverage: Australia -Currency: Variable, based on GEODATA TOPO 250K Series 1 -Coordinates: Geographical -Datum: GDA94, AHD -Medium: Free online -Format: -Vector: ArcInfo Export, ESRI Shapefile, MapInfo mid/mif and Vector Product Format (VPF) -Raster: Band Interleaved by Line (BIL)

    1:2.5 Million - GEODATA TOPO 2.5M 2003 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 2.5 million general reference map and is suitable for GIS applications. The product consists of the following layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; Spot heights; and waterbodies. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 1:2.5 million scale general reference maps. This data supersedes the TOPO 2.5M 1998 product through the following characteristics: developed according to GEODATA specifications derived from GEODATA TOPO 250K Series 2 data where available. Product Specifications Themes: GEODATA TOPO 2.5M 2003 consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; spot heights; and waterbodies Coverage: Australia Currency: 2003 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online - Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif

    1:5 Million - GEODATA TOPO 5M 2004 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 5 million general reference map and is suitable for GIS applications. Offshore and sand ridge layers were sourced from scanning of the original 1:5 million map production material. The remaining nine layers were derived from the GEODATA TOPO 2.5M 2003 dataset. Free online. Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif. Product Specifications: Themes: consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges, spot heights and waterbodies Coverage: Australia Currency: 2004 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online

    1:10 Million - The GEODATA TOPO 10M 2002 version of this product has been completely revised, including the source information. The data is derived primarily from GEODATA TOPO 250K Series 1 data. In October 2003, the data was released in double precision coordinates. It provides a fundamental base layer of geographic information on which you can build a wide range of applications and is particularly suited to State-wide and national applications. The data consists of ten layers: built-up areas, contours, drainage, Spot heights, framework, localities, offshore, rail transport, road transport, and waterbodies. Coverage: Australia Currency: 2002 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, Arcview Shapefile and MapInfo mid/mif Medium: Free online

    Dataset History

    1:1Million - Vector data was produced by generalising Geoscience Australia's GEODATA TOPO 250K Series 1 data and updated using Series 2 data where available in January 2001. Raster data was sourced from USGS and updated using GEODATA 9 Second DEM Series 2, 1:5 million, Vegetation - Present (1988) and National Land and Water Resources data. However, updates have not been subjected to thorough vetting. A more detailed land use classification for Australia is available at www.nlwra.gov.au.

    Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_48006

    1:2.5Million - Data for the Contours, Offshore, and Sand ridge layers was captured from 1:2.5 million scale mapping by scanning stable base photographic film positives of the original map production material. The key source material for Built-up areas, Drainage, Spot heights, Framework, Localities, Rail transport, Road transport and Waterbodies layers was GEODATA TOPO 2.5M 2003

    Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60804

    1:5Million - Offshore and Sand Ridge layers have been derived from 1:5M scale mapping by scanning stable base photographic film positives of the various layers of the original map production material. The remaining layers were sourced from the GEODATA TOPO 2.5M 2003 product.

    Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_61114

    1:10Million - The key source for production of the Builtup Areas, Drainage, Framework, Localities, Rail Transport, Road Transport and Waterbodies layers was the GEODATA TOPO 250K Series 1 product. Some revision of the Builtup Areas, Road Transport, Rail Transport and Waterbodies layers was carried out using the latest available satelite imagery. The primary source for the Spot Heights, Contours and Offshore layers was the GEODATA TOPO 10M Version 1 product. A further element to the production of GEODATA TOPO 10M 2002 has been the datum shift from the Australian Geodetic Datum 1966 (AGD66) to the Geocentric Datum of Australia 1994 (GDA94).

    Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60803

    Dataset Citation

    Geoscience Australia (2001) Geoscience Australia GEODATA TOPO series - 1:1 Million to 1:10 Million scale. Bioregional Assessment Source Dataset. Viewed 09 October 2018, http://data.bioregionalassessments.gov.au/dataset/310c5d07-5a56-4cf7-a5c8-63bdb001cd1a.

  11. Northeast Pilbara GIS teaching package (byte data and real data grids)

    • ecat.ga.gov.au
    • datadiscoverystudio.org
    • +1more
    Updated Jan 1, 1999
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (1999). Northeast Pilbara GIS teaching package (byte data and real data grids) [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/a05f7892-b140-7506-e044-00144fdd4fa6
    Explore at:
    Dataset updated
    Jan 1, 1999
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Area covered
    Description

    Outcrop geology was obtained directly from the following 1:250 000 map sheets: Marble Bar, Nullagine, Port Hedland and Yarrie. This dataset consists of both raster and vector data. Raster data which is unsigned 8 bit integer, can be viewed in Arc/Info, ArcView, MapInfo, ERMapper, ERViewer and ArcExplorer. Raster data which is 4 byte real data, can only be viewed and manipulated with an image processing package such as ERMapper.

  12. m

    Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m...

    • demo.dev.magda.io
    • researchdata.edu.au
    • +2more
    zip
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product) [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-8bb2b104-dd6e-47f3-88b3-e4a5602c5f5c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 4, 2022
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. Resource contains an ArcGIS …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. Resource contains an ArcGIS file geodatabase raster for the National Vegetation Information System (NVIS) Major Vegetation Groups - Australia-wide, present extent (FGDB_NVIS4_1_AUST_MVG_EXT). Related datasets are also included: FGDB_NVIS4_1_KEY_LAYERS_EXT - ArcGIS File Geodatabase Feature Class of the Key Datasets that make up NVIS Version 4.1 - Australia wide; and FGDB_NVIS4_1_LUT_KEY_LAYERS - Lookup table for Dataset Key Layers. This raster dataset provides the latest summary information (November 2012) on Australia's present (extant) native vegetation. It is in Albers Equal Area projection with a 100 m x 100 m (1 Ha) cell size. A comparable Estimated Pre-1750 (pre-european, pre-clearing) raster dataset is available: - NVIS4_1_AUST_MVG_PRE_ALB. State and Territory vegetation mapping agencies supplied a new version of the National Vegetation Information System (NVIS) in 2009-2011. Some agencies did not supply new data for this version but approved re-use of Version 3.1 data. Summaries were derived from the best available data in the NVIS extant theme as at June 2012. This product is derived from a compilation of data collected at different scales on different dates by different organisations. Please refer to the separate key map showing scales of the input datasets. Gaps in the NVIS database were filled by non-NVIS data, notably parts of South Australia and small areas of New South Wales such as the Curlewis area. The data represent on-ground dates of up to 2006 in Queensland, 2001 to 2005 in South Australia (depending on the region) and 2004/5 in other jurisdictions, except NSW. NVIS data was partially updated in NSW with 2001-09 data, with extensive areas of 1997 data remaining from the earlier version of NVIS. Major Vegetation Groups were identified to summarise the type and distribution of Australia's native vegetation. The classification contains different mixes of plant species within the canopy, shrub or ground layers, but are structurally similar and are often dominated by a single genus. In a mapping sense, the groups reflect the dominant vegetation occurring in a map unit where there are a mix of several vegetation types. Subdominant vegetation groups which may also be present in the map unit are not shown. For example, the dominant vegetation in an area may be mapped as dominated by eucalypt open forest, although it contains pockets of rainforest, shrubland and grassland vegetation as subdominants. The (related) Major Vegetation Subgroups represent more detail about the understorey and floristics of the Major Vegetation Groups and are available as separate raster datasets: - NVIS4_1_AUST_MVS_EXT_ALB - NVIS4_1_AUST_MVS_PRE_ALB A number of other non-vegetation and non-native vegetation land cover types are also represented as Major Vegetation Groups. These are provided for cartographic purposes, but should not be used for analyses. For further background and other NVIS products, please see the links on http://www.environment.gov.au/erin/nvis/index.html. The current NVIS data products are available from http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system. Purpose For use in Bioregional Assessment land classification analyses Dataset History NVIS Version 4.1 The input vegetation data were provided from over 100 individual projects representing the majority of Australia's regional vegetation mapping over the last 50 years. State and Territory custodians translated the vegetation descriptions from these datasets into a common attribute framework, the National Vegetation Information System (ESCAVI, 2003). Scales of input mapping ranged from 1:25,000 to 1:5,000,000. These were combined into an Australia-wide set of vector data. Non-terrestrial areas were mostly removed by the State and Territory custodians before supplying the data to the Environmental Resources Information Network (ERIN), Department of Sustainability Environment Water Population and Communities (DSEWPaC). Each NVIS vegetation description was written to the NVIS XML format file by the custodian, transferred to ERIN and loaded into the NVIS database at ERIN. A considerable number of quality checks were performed automatically by this system to ensure conformity to the NVIS attribute standards (ESCAVI, 2003) and consistency between levels of the NVIS Information Hierarchy within each description. Descriptions for non-vegetation and non-native vegetation mapping codes were transferred via CSV files. The NVIS vector (polygon) data for Australia comprised a series of jig-saw pieces, eachup to approx 500,000 polygons - the maximum tractable size for routine geoprocesssing. The spatial data was processed to conform to the NVIS spatial format (ESCAVI, 2003; other papers). Spatial processing and attribute additions were done mostly in ESRI File Geodatabases. Topology and minor geometric corrections were also performed at this stage. These datasets were then loaded into ESRI Spatial Database Engine as per the ERIN standard. NVIS attributes were then populated using Oracle database tables provided by custodians, mostly using PL/SQL Developer or in ArcGIS using the field calculator (where simple). Each spatial dataset was joined to and checked against a lookup table for the relevant State/Territory to ensure that all mapping codes in the dominant vegetation type of each polygon (NVISDSC1) had a valid lookup description, including an allocated MVG. Minor vegetation components of each map unit (NVISDSC2-6) were not checked, but could be considered mostly complete. Each NVIS vegetation description was allocated to a Major Vegetation Group (MVG) by manual interpretation at ERIN. The Australian Natural Resources Atlas (http://www.anra.gov.au/topics/vegetation/pubs/native_vegetation/vegfsheet.html) provides detailed descriptions of most Major Vegetation Groups. Three new MVGs were created for version 4.1 to better represent open woodland formations and forests (in the NT) with no further data available. NVIS vegetation descriptions were reallocated into these classes, if appropriate: Unclassified Forest Other Open Woodlands Mallee Open Woodlands and Sparse Mallee Shublands (Thus there are a total of 33 MVGs existing as at June 2012). Data values defined as cleared or non-native by data custodians were attributed specific MVG values such as 25 - Cleared or non native, 27 - naturally bare, 28 - seas & estuaries, and 99 - Unknown. As part of the process to fill gaps in NVIS, the descriptive data from non-NVIS sources was also referenced in the NVIS database, but with blank vegetation descriptions. In general. the gap-fill data comprised (a) fine scale (1:250K or better) State/Territory vegetation maps for which NVIS descriptions were unavailable and (b) coarse-scale (1:1M) maps from Commonwealth and other sources. MVGs were then allocated to each description from the available desciptions in accompanying publications and other sources. Parts of New South Wales, South Australia, QLD and the ACT have extensive areas of vector "NoData", thus appearing as an inland sea. The No Data areas were dealt with differently by state. In the ACT and SA, the vector data was 'gap-filled' and attributed using satellite imagery as a guide prior to rasterising. Most of these areas comprised a mixture of MVG 24 (inland water) and 25 (cleared), and in some case 99 (Unknown). The NSW & QLD 'No Data' areas were filled using a raster mask to fill the 'holes'. These areas were attributed with MVG 24, 26 (water & unclassified veg), MVG 25 (cleared); or MVG 99 Unknown/no data, where these areas were a mixture of unknown proportions. Each spatial dataset with joined lookup table (including MVG_NUMBER linked to NVISDSC1) was exported to a File Geodatabase as a feature class. These were reprojected into Albers Equal Area projection (Central_Meridian: 132.000000, Standard_Parallel_1: -18.000000, Standard_Parallel_2: -36.000000, Linear Unit: Meter (1.000000), Datum GDA94, other parameters 0). Each feature class was then rasterised to a 100m raster with extents to a multiple of 1000 m, to ensure alignment. In some instances, areas of 'NoData' had to be modelled in raster. For example, in NSW where non-native areas (cleared, water bodies etc) have not been mapped. The rasters were then merged into a 'state wide' raster. State rasters were then merged into this 'Australia wide' raster dataset. November 2012 Corrections Closer inspection of the original 4.1 MVG Extant raster dataset highlighted some issues with the raster creation process which meant that raster pixels in some areas did not align as intended. These were corrected, and the new properly aligned rasters released in November 2012. Dataset Citation Department of the Environment (2012) Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product). Bioregional Assessment Source Dataset. Viewed 10 July 2017, http://data.bioregionalassessments.gov.au/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374.

  13. e

    SM 1:5000 cadastral component raster data - Hradec Králové 2-4

    • data.europa.eu
    Updated Dec 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). SM 1:5000 cadastral component raster data - Hradec Králové 2-4 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-hkra24
    Explore at:
    Dataset updated
    Dec 17, 2012
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  14. e

    SM 1:5000 cadastral component raster data - Jaroslavice 4-1

    • data.europa.eu
    Updated Dec 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). SM 1:5000 cadastral component raster data - Jaroslavice 4-1 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-jars41?locale=en
    Explore at:
    Dataset updated
    Dec 17, 2012
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  15. NOAA Office for Coastal Management Sea Level Rise Data: Current Mean Higher...

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). NOAA Office for Coastal Management Sea Level Rise Data: Current Mean Higher High Water Inundation Extent [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-sea-level-rise-data-current-mean-higher-high-water-inundatio5
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://www.coast.noaa.gov/slr These data depict the potential inundation of coastal areas resulting from current Mean Higher High Water (MHHW) conditions. The process used to produce the data can be described as a modified bathtub approach that attempts to account for both local/regional tidal variability as well as hydrological connectivity. The process uses two source datasets to derive the final inundation rasters and polygons and accompanying low-lying polygons: the Digital Elevation Model (DEM) of the area and a tidal surface model that represents spatial tidal variability. The tidal model is created using the NOAA National Geodetic Survey's VDATUM datum transformation software (http://vdatum.noaa.gov) in conjunction with spatial interpolation/extrapolation methods and represents the MHHW tidal datum in orthometric values (North American Vertical Datum of 1988). The model used to produce these data does not account for erosion, subsidence, or any future changes in an area's hydrodynamics. It is simply a method to derive data in order to visualize the potential scale, not exact location, of inundation from sea level rise. Both raster and vector data are provided. The raster data represent both the horizontal extent of inundation and depth above ground, in meters. The vector data represent the horizontal extent of both hydrologically connected and unconnected inundation. The vector "slr" data represent inundation that is hydrologically connected to the ocean. The vector "low" data represent areas that are hydrologically unconnected to the ocean, but are below MHHW and may also flood. For more information, contact coastal.info@noaa.gov.

  16. e

    SM 1:5000 cadastral component raster data - Vyškov 5-2

    • data.europa.eu
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). SM 1:5000 cadastral component raster data - Vyškov 5-2 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-vysk52
    Explore at:
    Dataset updated
    Oct 14, 2021
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  17. e

    SM 1:5000 cadastral component raster data - Ledeč nad Sázavou 7-8

    • data.europa.eu
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). SM 1:5000 cadastral component raster data - Ledeč nad Sázavou 7-8 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-leds78
    Explore at:
    Dataset updated
    Oct 14, 2021
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  18. w

    SM 1:5000 cadastral component raster data - Zlín 3-8

    • data.wu.ac.at
    Updated Sep 4, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geoportal Czech Office for Surveying, Mapping and Cadastre (2018). SM 1:5000 cadastral component raster data - Zlín 3-8 [Dataset]. https://data.wu.ac.at/schema/www_europeandataportal_eu/ZjlhZTgwZDUtZTI3Yy00NjFhLThmOTgtODI1ZDQwYmYzMmRl
    Explore at:
    Dataset updated
    Sep 4, 2018
    Dataset provided by
    Geoportal Czech Office for Surveying, Mapping and Cadastre
    Area covered
    d0dc1e35229d69f0e1f7160a0dc20ccbe189f902
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  19. w

    SM 1:5000 cadastral component raster data - Žatec 5-9

    • data.wu.ac.at
    Updated Sep 4, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geoportal Czech Office for Surveying, Mapping and Cadastre (2018). SM 1:5000 cadastral component raster data - Žatec 5-9 [Dataset]. https://data.wu.ac.at/schema/www_europeandataportal_eu/MGE1ZDk3ODMtOTQyZC00ODA0LTk1YjEtODlmMmZkNTVjNzhm
    Explore at:
    Dataset updated
    Sep 4, 2018
    Dataset provided by
    Geoportal Czech Office for Surveying, Mapping and Cadastre
    Area covered
    d1554da6b6c5bbd0a2728a33f076d22c7196a3e7
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

  20. e

    SM 1:5000 cadastral component raster data - Turnov 8-3

    • data.europa.eu
    Updated Dec 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). SM 1:5000 cadastral component raster data - Turnov 8-3 [Dataset]. https://data.europa.eu/data/datasets/cz-cuzk-sm5-rk-turn83?locale=en
    Explore at:
    Dataset updated
    Dec 17, 2012
    Description

    The data were created by transformation of vector cadastral component of SM 5 to raster file. In territories, where vector SM 5 has not been created yet, the cadastral and altimetry components were created by scanning of individual printing masters of planimetry and altimetry from the last issue of the State Map 1:5,000 - derived. The cadastral component does not contain parcel numbers.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896

Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA

Explore at:
Dataset updated
Jul 7, 2021
Dataset provided by
ESS-DIVE
Authors
Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
Time period covered
Jan 1, 2008 - Jan 1, 2012
Area covered
Description

This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

Search
Clear search
Close search
Google apps
Main menu